199 research outputs found

    Right Atrial Pressure Affects the Interaction between Lung Mechanics and Right Ventricular Function in Spontaneously Breathing COPD Patients

    Get PDF
    INTRODUCTION: It is generally known that positive pressure ventilation is associated with impaired venous return and decreased right ventricular output, in particular in patients with a low right atrial pressure and relative hypovolaemia. Altered lung mechanics have been suggested to impair right ventricular output in COPD, but this relation has never been firmly established in spontaneously breathing patients at rest or during exercise, nor has it been determined whether these cardiopulmonary interactions are influenced by right atrial pressure. METHODS: Twenty-one patients with COPD underwent simultaneous measurements of intrathoracic, right atrial and pulmonary artery pressures during spontaneous breathing at rest and during exercise. Intrathoracic pressure and right atrial pressure were used to calculate right atrial filling pressure. Dynamic changes in pulmonary artery pulse pressure during expiration were examined to evaluate changes in right ventricular output. RESULTS: Pulmonary artery pulse pressure decreased up to 40% during expiration reflecting a decrease in stroke volume. The decline in pulse pressure was most prominent in patients with a low right atrial filling pressure. During exercise, a similar decline in pulmonary artery pressure was observed. This could be explained by similar increases in intrathoracic pressure and right atrial pressure during exercise, resulting in an unchanged right atrial filling pressure. CONCLUSIONS: We show that in spontaneously breathing COPD patients the pulmonary artery pulse pressure decreases during expiration and that the magnitude of the decline in pulmonary artery pulse pressure is not just a function of intrathoracic pressure, but also depends on right atrial pressure

    Imaging Lung Disease in Systemic Sclerosis

    Get PDF
    Interstitial lung disease and pulmonary hypertension (PH) are the most common cardiopulmonary findings in patients with systemic sclerosis (SSc). About two thirds of patients suffering from SSc develop scleroderma interstitial lung disease. PH is present in about 20% of SSc patients and is typically associated with severe lung disease, although it may be an isolated manifestation of SSc. High-resolution CT scanning is a key method for evaluating chest involvement. There are four roles of imaging in scleroderma interstitial lung disease: 1) detection of lung involvement, 2) identification of patients likely to respond to treatment, 3) assessment of treatment efficacy, and 4) exclusion of other significant diseases to include PH and cardiac and esophageal abnormalities

    Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis.

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10(-6)) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases

    Surfactants: their role in preventing the precipitation of proteins by tannins in insect guts

    Full text link
    Much more tannic acid or pin oak tannin is required to precipitate the abundant leaf protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPC), from Manduca sexta gut fluid adjusted to pH 6.5 than is required to precipitate this protein from an aqueous buffer at the same pH. This finding demonstrates that some characteristic of M. sexta gut fluid, in addition to its basicity, counteracts the potential of tannins to precipitate ingested proteins. Gut fluid of M. sexta has a surface tension of 36–39 dynes/cm, indicating the presence of surfactants. Lysolecithin and linoleoylglycine, surfactants known to be present in insect gut fluids, also interfere with the precipitation of RuBPC by tannins at pH 6.5. It is concluded that detergency is a widespread property of insect gut fluids that counteracts the potential of tannins to precipitate die ary proteins, and it is argued that there is no longer any justification for continuing to refer to tannins as digestibility-reducing-substances. Finding that there has been no formidable barrier to the evolution of mechanisms that counter a generalized antidigestive action by tannins is difficult to reconcile with the idea that reduced digestibility is an evolved anti-herbivore adaptation of apparent plants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47751/1/442_2004_Article_BF00379632.pd

    Canine models of copper toxicosis for understanding mammalian copper metabolism

    Get PDF
    Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeostasis remain unanswered. Genetic studies in the Bedlington terrier, a dog breed affected with copper toxicosis, identified COMMD1, a gene that was previously unknown to be involved in copper metabolism. Besides the Bedlington terrier, a number of other dog breeds suffer from hereditary copper toxicosis and show similar phenotypes to humans with copper storage disorders. Unlike the heterogeneity of most human populations, the genetic structure within a purebred dog population is homogeneous, which is advantageous for unraveling the molecular genetics of complex diseases. This article reviews the work that has been done on the Bedlington terrier, summarizes what was learned from studies into COMMD1 function, describes hereditary copper toxicosis phenotypes in other dog breeds, and discusses the opportunities for genome-wide association studies on copper toxicosis in the dog to contribute to the understanding of mammalian copper metabolism and copper metabolism disorders in man

    Genome-wide association analysis identifies six new loci associated with forced vital capacity

    Get PDF
    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies
    corecore