756 research outputs found

    Heavy-Fermion Formation at the Metal-to-Insulator Transition in Gd1x_{1-x}Srx_xTiO3_3

    Full text link
    The perovskite-like transition-metal oxide Gd1x_{1-x}Srx_xTiO3_3 is investigated by measurements of resistivity, specific-heat, and electron paramagnetic resonance (EPR). Approaching the metal-to-insulator transition from the metallic regime (x0.2x \geq 0.2), the Sommerfeld coefficient γ\gamma of the specific heat becomes strongly enhanced and the resistivity increases quadratically at low temperatures, which both are fingerprints of strong electronic correlations. The temperature dependence of the dynamic susceptibility, as determined from the Gd3+^{3+}-EPR linewidth, signals the importance of strong spin fluctuations, as observed in heavy-fermion compounds.Comment: 4pages, 3 figure

    Evidence for Jahn-Teller distortions at the antiferromagnetic transition in LaTiO3_3

    Full text link
    LaTiO3_3 is known as Mott-insulator which orders antiferromagnetically at TN=146T_{\rm N}=146 K. We report on results of thermal expansion and temperature dependent x-ray diffraction together with measurements of the heat capacity, electrical transport measurements, and optical spectroscopy in untwinned single crystals. At TNT_{\rm N} significant structural changes appear, which are volume conserving. Concomitant anomalies are also observed in the dc-resistivity, in bulk modulus, and optical reflectivity spectra. We interpret these experimental observations as evidence of orbital order.Comment: 4 pages, 4 figures; published in Phys. Rev. Lett. 91, 066403 (2003

    Spin fluctuations in the quasi-two dimensional Heisenberg ferromagnet GdI_2 studied by Electron Spin Resonance

    Full text link
    The spin dynamics of GdI_2 have been investigated by ESR spectroscopy. The temperature dependences of the resonance field and ESR intensity are well described by the model for the spin susceptibility proposed by Eremin et al. [Phys. Rev. B 64, 064425 (2001)]. The temperature dependence of the resonance linewidth shows a maximum similar to the electrical resistance and is discussed in terms of scattering processes between conduction electrons and localized spins.Comment: to be published in PR

    Spin and orbital frustration in MnSc_2S_4 and FeSc_2S_4

    Full text link
    Crystal structure, magnetic susceptibility, and specific heat were measured in the normal cubic spinel compounds MnSc_2S_4 and FeSc_2S_4. Down to the lowest temperatures, both compounds remain cubic and reveal strong magnetic frustration. Specifically the Fe compound is characterized by a Curie-Weiss temperature \Theta_{CW}= -45 K and does not show any indications of order down to 50 mK. In addition, the Jahn-Teller ion Fe^{2+} is orbitally frustrated. Hence, FeSc_2S_4 belongs to the rare class of spin-orbital liquids. MnSc_2S_4 is a spin liquid for temperatures T > T_N \approx 2 K.Comment: 4 pages, to be published in Physical Review Letter

    Anisotropic Colossal Magnetoresistance Effects in Fe_{1-x}Cu_xCr_2S_4

    Full text link
    A detailed study of the electronic transport and magnetic properties of Fe1x_{1-x}Cux_xCr2_2S4_4 (x0.5x \leq 0.5) on single crystals is presented. The resistivity is investigated for 2T3002 \leq T \leq 300 K in magnetic fields up to 14 Tesla and under hydrostatic pressure up to 16 kbar. In addition magnetization and ferromagnetic resonance (FMR) measurements were performed. FMR and magnetization data reveal a pronounced magnetic anisotropy, which develops below the Curie temperature, TCT_{\mathrm{C}}, and increases strongly towards lower temperatures. Increasing the Cu concentration reduces this effect. At temperatures below 35 K the magnetoresistance, MR=ρ(0)ρ(H)ρ(0)MR = \frac{\rho(0) - \rho(H)}{\rho(0)}, exhibits a strong dependence on the direction of the magnetic field, probably due to an enhanced anisotropy. Applying the field along the hard axis leads to a change of sign and a strong increase of the absolute value of the magnetoresistance. On the other hand the magnetoresistance remains positive down to lower temperatures, exhibiting a smeared out maximum with the magnetic field applied along the easy axis. The results are discussed in the ionic picture using a triple-exchange model for electron hopping as well as a half-metal utilizing a band picture.Comment: some typos correcte

    Spectral Analysis of the Chandra Comet Survey

    Get PDF
    We present results of the analysis of cometary X-ray spectra with an extended version of our charge exchange emission model (Bodewits et al. 2006). We have applied this model to the sample of 8 comets thus far observed with the Chandra X-ray observatory and ACIS spectrometer in the 300-1000 eV range. The surveyed comets are C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), C/2000 WM1 (LINEAR), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), C/2001 Q4 (NEAT), 9P/2005 (Tempel 1) and 73P/2006-B (Schwassmann-Wachmann 3) and the observations include a broad variety of comets, solar wind environments and observational conditions. The interaction model is based on state selective, velocity dependent charge exchange cross sections and is used to explore how cometary X-ray emission depend on cometary, observational and solar wind characteristics. It is further demonstrated that cometary X-ray spectra mainly reflect the state of the local solar wind. The current sample of Chandra observations was fit using the constrains of the charge exchange model, and relative solar wind abundances were derived from the X-ray spectra. Our analysis showed that spectral differences can be ascribed to different solar wind states, as such identifying comets interacting with (I) fast, cold wind, (II), slow, warm wind and (III) disturbed, fast, hot winds associated with interplanetary coronal mass ejections. We furthermore predict the existence of a fourth spectral class, associated with the cool, fast high latitude wind.Comment: 16 pages, 16 figures, and 7 Tables; accepted A&A (Due to space limits, this version has lower resolution jpeg images.

    Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4

    Full text link
    Multiferroic materials, which reveal magnetic and electric order, are in the focus of recent solid state research. Especially the simultaneous occurrence of ferroelectricity and ferromagnetism, combined with an intimate coupling of magnetization and polarization via magneto-capacitive effects, could pave the way for a new generation of electronic devices. Here we present measurements on a simple cubic spinel with unusual properties: It shows ferromagnetic order and simultaneously relaxor ferroelectricity, i.e. a ferroelectric cluster state, reached by a smeared-out phase transition, both with sizable ordering temperatures and moments. Close to the ferromagnetic ordering temperature the magneto-capacitive coupling, characterized by a variation of the dielectric constant in an external magnetic field, reaches colossal values of nearly 500%. We attribute the relaxor properties to geometric frustration, which is well known for magnetic moments, but here is found to impede long-range order of the structural degrees of freedom.Comment: 4 pages, 3 figure

    New limits on nucleon decays into invisible channels with the BOREXINO Counting Test Facility

    Get PDF
    The results of background measurements with the second version of the BOREXINO Counting Test Facility (CTF-II), installed in the Gran Sasso Underground Laboratory, were used to obtain limits on the instability of nucleons, bounded in nuclei, for decays into invisible channels (invinv): disappearance, decays to neutrinos, etc. The approach consisted of a search for decays of unstable nuclides resulting from NN and NNNN decays of parents 12^{12}C, 13^{13}C and 16^{16}O nuclei in the liquid scintillator and the water shield of the CTF. Due to the extremely low background and the large mass (4.2 ton) of the CTF detector, the most stringent (or competitive) up-to-date experimental bounds have been established: τ(ninv)>1.81025\tau(n \to inv) > 1.8 \cdot 10^{25} y, τ(pinv)>1.11026\tau(p \to inv) > 1.1 \cdot 10^{26} y, τ(nninv)>4.91025\tau(nn \to inv) > 4.9 \cdot 10^{25} y and τ(ppinv)>5.01025\tau(pp \to inv) > 5.0 \cdot 10^{25} y, all at 90% C.L.Comment: 22 pages, 3 figures,submitted to Phys.Lett.

    Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)

    Get PDF
    Using a sample of 122 million Upsilon(3S) events recorded with the BaBar detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for the hb(1P)h_b(1P) spin-singlet partner of the P-wave chi_{bJ}(1P) states in the sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We observe an excess of events above background in the distribution of the recoil mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width of the observed signal is consistent with experimental resolution, and its significance is 3.1sigma, including systematic uncertainties. We obtain the value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Measurement of the B+ --> p pbar K+ Branching Fraction and Study of the Decay Dynamics

    Get PDF
    With a sample of 232x10^6 Upsilon(4S) --> BBbar events collected with the BaBar detector, we study the decay B+ --> p pbar K+ excluding charmonium decays to ppbar. We measure a branching fraction Br(B+ --> p pbar K+)=(6.7+/-0.5+/-0.4)x10^{-6}. An enhancement at low ppbar mass is observed and the Dalitz plot asymmetry suggests dominance of the penguin amplitude in this B decay. We search for a pentaquark candidate Theta*++ decaying into pK+ in the mass range 1.43 to 2.00 GeV/c2 and set limits on Br(B+ --> Theta*++pbar)xBr(Theta*++ --> pK+) at the 10^{-7} level.Comment: 8 pages, 7 postscript figures, submitted to Phys. Rev. D (Rapid Communications
    corecore