71 research outputs found

    Міністерство фінансів України як головний орган управління державними фінансами

    Get PDF
    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.Funding Agencies|EC FP-7 International Research Staff Exchange Scheme (IRSES) Grant [318520]; Linkoping Linnaeus Initiative for Novel Functional Materials (LiLi-NFM); European Union [604391]; Swedish Research Council (VR) Marie Sklodowska Curie International Career Grant [2015-00679]</p

    Непрерывное фармакологическое образование при подготовке врачебных кадров

    Get PDF
    ОБРАЗОВАНИЕ МЕДИЦИНСКОЕВУЗЫМЕДИЦИНСКИЕ УЧЕБНЫЕ ЗАВЕДЕНИЯОБРАЗОВАНИЕ ФАРМАЦЕВТИЧЕСКОЕ, ПОВЫШЕНИЕ КВАЛИФИКАЦИИ /МЕТОДЫНЕПРЕРЫВНОЕ ФАРМАКОЛОГИЧЕСКОЕ ОБРАЗОВАНИЕМЕДИЦИНСКИЕ КАДР

    Morphology engineering of ZnO nanostructures

    No full text
    Nanosized ZnO structures were grown by atmospheric pressure metalorganic chemical vapor deposition (APMOCVD) in the temperature range 200-500 degrees C at variable precursor pressure. Temperature induced evolution of the ZnO microstructure was observed, resulting in regular transformation of the material from conventional polycrystalline layers to hierarchically arranged sheaves of ZnO nanowires. The structures obtained were uniformly planarly located over the substrate and possessed as low nanowires diameter as 30-45 nm at the tips. The observed growth evolution is explained in terms of ZnO crystal planes free energy difference and growth kinetics. For comparison, the convenient growth at constant precursor pressure on Si and SiC substrates has been performed, resulting in island-type grown ZnO nanostructures. The demonstrated nanosized ZnO structures may have unique possible areas of application, which are listed here.Funding Agencies|Swedish Research Link (SRL-VR)|2009-6427|IFM LiU|
    corecore