1,275 research outputs found

    Aflatoxin B1 Degradation by Stenotrophomonas Maltophilia and Other Microbes Selected Using Coumarin Medium#

    Get PDF
    Aflatoxin B1 (AFB1) is one of the most harmful mycotoxins in animal production and food industry. A safe, effective and environmentally sound detoxification method is needed for controlling this toxin. In this study, 65 samples were screened from various sources with vast microbial populations using a newly developed medium containing coumarin as the sole carbon source. Twenty five single-colony bacterial isolates showing AFB1 reduction activity in a liquid culture medium were selected from the screen. Isolate 35-3, obtained from tapir feces and identified to be Stenotrophomonas maltophilia, reduced AFB1 by 82.5% after incubation in the liquid medium at 37 °C for 72 h. The culture supernatant of isolate 35-3 was able to degrade AFB1 effectively, whereas the viable cells and cell extracts were far less effective. Factors influencing AFB1 degradation by the culture supernatant were investigated. Activity was reduced to 60.8% and 63.5% at 20 °C and 30 °C, respectively, from 78.7% at 37 °C. The highest degradation rate was 84.8% at pH 8 and the lowest was only 14.3% at pH 4.0. Ions Mg2+ and Cu2+ were activators for AFB1 degradation, however ion Zn2+ was a strong inhibitor. Treatments with proteinase K, proteinase K plus SDS and heating significantly reduced or eradicated the degradation activity of the culture supernatant. The results indicated that the degradation of AFB1 by S. maltophilia 35-3 was enzymatic and could have a great potential in industrial applications

    Centrality Dependence Of The Pseudorapidity Density Distribution For Charged Particles In Pb-pb Collisions At √snn=2.76tev

    Get PDF
    7264/Mai61062

    K0SK0S and K0SK± femtoscopy in pp collisions at √s = 5.02 and 13 TeV

    Get PDF
    Femtoscopic correlations with the particle pair combinations (KSKS0)-K-0 and (KSK +/-)-K-0 are studied in pp collisions at root s= 5.02 and 13 TeV by the ALICE experiment. At both energies, boson source parameters are extracted for both pair combinations, by fitting models based on Gaussian size distributions of the sources, to the measured two-particle correlation functions. The interaction model used for the (KSKS0)-K-0 analysis includes quantum statistics and strong final-state interactions through the f(0) (980) and a(0) (980) resonances. The model used for the (KSK +/-)-K-0 analysis includes only the final-state interaction through the a(0) resonance. Source parameters extracted in the present work are compared with published values from pp collisions at root s = 7 TeV and the different pair combinations are found to be consistent. From the observation that the strength of the (KSKS0)-K-0 correlations is significantly greater than the strength of the (KSK +/-)-K-0 correlations, the new results are compatible with the a(0) resonance being a tetraquark state of the form (q(1), (q(2)) over bar, s, (s) over bar), where q(1) and q(2) are uor d quarks. (C) 2022 European Organization for Nuclear Research, ALICE. Published by Elsevier B.V

    Measurement of beauty-strange meson production in Pb–Pb collisions at sNN=5.02TeV via non-prompt Ds + mesons

    Get PDF
    The production yields of non-prompt D_s^+ mesons, namely D_s^+ mesons from beauty-hadron decays, were measured for the first time as a function of the transverse momentum (pT) at midrapidity (|y| phi pi+, with phi -> K+ K-, in the 4 < pT < 36 GeV/c and 2 < pT < 24 GeV/c intervals for the 0–10% and 30–50% centrality classes, respectively. The measured yields of non-prompt D_S^+ mesons are compared to those of prompt D_s^+ and non-prompt D0 mesons by calculating the ratios of the production yields in Pb–Pb collisions and the nuclear modification factor RAA. The ratio between the RAA of non-prompt D_s^+ and prompt D_s^+ mesons, and that between the RAA of non-prompt D_s^+ and non-prompt D0 mesons in central Pb–Pb collisions are found to be on average higher than unity in the 4 < pT < 12 GeV/c interval with a statistical significance of about 1.6 sigma and 1.7 sigma, respectively. The measured RAA ratios are compared with the predictions of theoretical models of heavy-quark transport in a hydrodynamically expanding QGP that incorporate hadronisation via quark recombination

    Global baryon number conservation encoded in net-proton fluctuations measured in Pb–Pb collisions at sNN=2.76 TeV

    Get PDF

    Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions

    Get PDF
    The first evidence of spin alignment of vector mesons (K^{*0} and ϕ) in heavy-ion collisions at the Large Hadron Collider (LHC) is reported. The spin density matrix element ρ_{00} is measured at midrapidity (|y|<0.5) in Pb-Pb collisions at a center-of-mass energy (sqrt[s_{NN}]) of 2.76 TeV with the ALICE detector. ρ_{00} values are found to be less than 1/3 (1/3 implies no spin alignment) at low transverse momentum (p_{T}<2  GeV/c) for K^{*0} and ϕ at a level of 3σ and 2σ, respectively. No significant spin alignment is observed for the K_{S}^{0} meson (spin=0) in Pb-Pb collisions and for the vector mesons in pp collisions. The measured spin alignment is unexpectedly large but qualitatively consistent with the expectation from models which attribute it to a polarization of quarks in the presence of angular momentum in heavy-ion collisions and a subsequent hadronization by the process of recombination

    Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb–Pb and Xe–Xe collisions

    Get PDF
    Measurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons v2(Psi_SP) in collisions of Pb ions at center-of-mass energy per nucleon–nucleon pair sqrt(sNN) = 2.76 TeV and Xe ions at sqrt(sNN) = 5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum for the 5–70% and ranges, respectively. The ratio between v2(Psi_SP) and the elliptic flow coefficient relative to the participant plane , estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models describing the initial state fluctuations. A significant transverse momentum dependence of the ratio is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state fluctuations. The ratios of and to the corresponding initial state eccentricities for Xe–Xe and Pb–Pb collisions at similar initial entropy density show a difference of with an additional variation of when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark–gluon plasma produced in heavy-ion collisions at the LHC

    Measurements of azimuthal anisotropies at forward and backward rapidity with muons in high-multiplicity p–Pb collisions at sNN=8.16 TeV

    Get PDF
    The study of the azimuthal anisotropy of inclusive muons produced in p–Pb collisions at sqrt(sNN) = 8.16 TeV, using the ALICE detector at the LHC is reported. The measurement of the second-order Fourier coefficient of the particle azimuthal distribution, v2, is performed as a function of transverse momentum pT in the 0–20% high-multiplicity interval at both forward (2.03 2 GeV/c. The v2 coefficient of inclusive muons is extracted using two different techniques, namely two-particle cumulants, used for the first time for heavy-flavour measurements, and forward–central two-particle correlations. Both techniques give compatible results. A positive v2 is measured at both forward and backward rapidities with a significance larger than 4.7σ and 7.6σ, respectively, in the interval 2 < pT < 6 GeV/c. Comparisons with previous measurements in p–Pb collisions at sqrt(sNN) = 5.02 TeV, and with AMPT and CGC-based theoretical calculations are discussed. The findings impose new constraints on the theoretical interpretations of the origin of the collective behaviour in small collision systems

    First study of the two-body scattering involving charm hadrons

    Get PDF
    This article presents the first measurement of the interaction between charm hadrons and nucleons. The two-particle momentum correlations of pD− and ̄pD+ pairs are measured by the ALICE Collaboration in high-multiplicity pp collisions at sqrt(s) = 13 TeV. The data are compatible with the Coulomb-only interaction hypothesis within 1.1–1.5 σ. The level of agreement slightly improves if an attractive nucleon (N) ̄D strong interaction is considered, in contrast to most model predictions which suggest an overall repulsive interaction. This measurement allows for the first time an estimation of the 68% confidence level interval for the isospin I = 0 inverse scattering length of the N ̄D state f−1 0;I=0 ∈ [−0.4; 0.9] fm−1, assuming negligible interaction for the isospin I = 1 channel

    First measurement of prompt and non-prompt D⁎+ vector meson spin alignment in pp collisions at s=13 TeV

    Get PDF
    This letter reports the first measurement of spin alignment, with respect to the helicity axis, for D*+ vector mesons and their charge conjugates from charm-quark hadronisation (prompt) and from beauty-meson decays (non-prompt) in hadron collisions. The measurements were performed at midrapidity (|y| D0 (-> K- pi+) pi+ decay products, in the D*+ rest frame, with respect to the D*+ momentum direction in the pp centre of mass frame. The rho_00 value for prompt D*+ mesons is consistent with 1/3, which implies no spin alignment. However, for non-prompt D*+ mesons an evidence of rho_00 larger than 1/3 is found. The measured value of the spin density element is in the interval, which is consistent with a Pythia 8 Monte Carlo simulation coupled with the EvtGen package, which implements the helicity conservation in the decay of D*+ meson from beauty mesons. In non-central heavy-ion collisions, the spin of the D*+ mesons may be globally aligned with the direction of the initial angular momentum and magnetic field. Based on the results for pp collisions reported in this letter it is shown that alignment of non-prompt D*+ mesons due to the helicity conservation coupled to the collective anisotropic expansion may mimic the signal of global spin alignment in heavy-ion collisions
    corecore