134 research outputs found
Many-body approach to proton emission and the role of spectroscopic factors
The process of proton emission from nuclei is studied by utilizing the
two-potential approach of Gurvitz and Kalbermann in the context of the full
many-body problem. A time-dependent approach is used for calculating the decay
width. Starting from an initial many-body quasi-stationary state, we employ the
Feshbach projection operator approach and reduce the formalism to an effective
one-body problem. We show that the decay width can be expressed in terms of a
one-body matrix element multiplied by a normalization factor. We demonstrate
that the traditional interpretation of this normalization as the square root of
a spectroscopic factor is only valid for one particular choice of projection
operator. This causes no problem for the calculation of the decay width in a
consistent microscopic approach, but it leads to ambiguities in the
interpretation of experimental results. In particular, spectroscopic factors
extracted from a comparison of the measured decay width with a calculated
single-particle width may be affected.Comment: 17 pages, Revte
ON THE INTRINSIC CHARM COMPONENT OF THE NUCLEON
Using a meson cloud model we calculate the squared charm radius
of the nucleon . The ratio between this squared radius and the ordinary baryon
squared radius is identified with the probability of ``seeing'' the intrinsic
charm component of the nucleon. Our estimate is compatible with those used to
successfully describe the charm production phenomenology.Comment: 9 pages, 2 figures not included, avaiable from the author
Mott effect at the chiral phase transition and anomalous J/Psi suppression
We investigate the in-medium modification of the charmonium break-up
processes due to the Mott effect for light (pi) and open-charm (D, D*) mesons
at the chiral/deconfinement phase transition. A model calculation for the
process J/Psi + pi -> D + \bar D* + h.c. is presented which demonstrates that
the Mott effect for the D-mesons leads to a threshold effect in the thermal
averaged break-up cross section. This effect is suggested as an explanation of
the phenomenon of anomalous J/Psi suppression in the CERN NA50 experiment.Comment: 9 pages, 3 figures; final version to appear in Phys. Lett.
Light Gluinos and the Parton Structure of the Nucleon
We study the effects of light gluinos with mass below about 1 GeV on the
nucleon parton densities and the running of alpha_(S). It is shown that from
the available high-statistics DIS data no lower bound on the gluino mass can be
derived. Also in the new kinematical region accessible at HERA the influence of
such light gluinos on structure f unctions is found to be very small and
difficult to detect. For use in more direct searches involving final state
signatures we present a radiative estimate of the gluino distribution in the
nucleon.Comment: 23 pages, LateX, 8 figures, MPI-PhT/94-22, LMU-3/9
Markovian MC simulation of QCD evolution at NLO level with minimum k_T
We present two Monte Carlo algorithms of the Markovian type which solve the
modified QCD evolution equations at the NLO level. The modifications with
respect to the standard DGLAP evolution concern the argument of the strong
coupling constant alpha_S. We analyze the z - dependent argument and then the
k_T - dependent one. The evolution time variable is identified with the
rapidity. The two algorithms are tested to the 0.05% precision level. We find
that the NLO corrections in the evolution of parton momentum distributions with
k_T - dependent coupling constant are of the order of 10 to 20%, and in a small
x region even up to 30%, with respect to the LO contributions.Comment: 32 pages, 9 pdf figure
Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV
The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3
magnetic muon spectrometer for zenith angles ranging from 0 degree to 58
degree. Due to the large exposure of about 150 m2 sr d, and the excellent
momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in
the vertical direction is achieved.
The ratio of positive to negative muons is studied between 20 GeV and 500
GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003
(stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
The Theory of Brown Dwarfs and Extrasolar Giant Planets
Straddling the traditional realms of the planets and the stars, objects below
the edge of the main sequence have such unique properties, and are being
discovered in such quantities, that one can rightly claim that a new field at
the interface of planetary science and and astronomy is being born. In this
review, we explore the essential elements of the theory of brown dwarfs and
giant planets, as well as of the new spectroscopic classes L and T. To this
end, we describe their evolution, spectra, atmospheric compositions, chemistry,
physics, and nuclear phases and explain the basic systematics of
substellar-mass objects across three orders of magnitude in both mass and age
and a factor of 30 in effective temperature. Moreover, we discuss the
distinctive features of those extrasolar giant planets that are irradiated by a
central primary, in particular their reflection spectra, albedos, and transits.
Aspects of the latest theory of Jupiter and Saturn are also presented.
Throughout, we highlight the effects of condensates, clouds, molecular
abundances, and molecular/atomic opacities in brown dwarf and giant planet
atmospheres and summarize the resulting spectral diagnostics. Where possible,
the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for
publication in the Reviews of Modern Physics. 30 figures are color. Most of
the figures are in GIF format to reduce the overall size. The full version
with figures can also be found at:
http://jupiter.as.arizona.edu/~burrows/papers/rm
- …