168 research outputs found
Decomposing balsa-STGs (working notes)
The DFG-project 'Optacon' is concerned with the resynthesis of speed-independentcircuits using STGs (a variant of Petri nets). One main issue is to decompose a large STG specifying the desired circuit behaviour into a collection of components that can be synthesized separately and together implement the specification. This report collects a number of working notes regarding useful decomposition; it assumes acquaintance with the topic
SUNY Oneonta Campus Invasive Plant Survey, Removal, and Replacement Plan
SUNY Oneonta Campus Invasive Plant Survey, Removal and Replacement Plan
College campuses encompass a variety of habitats subject to a high level of invasive plant introductions; from frequent soil disturbance during construction projects, and non-native horticultural plantings. At the same time, campus landscapes can become outdoor laboratories for invasive plant species research, education and control efforts. Last fall, students of Plant Ecology (BIOL 381) at SUNY Oneonta researched 24 invasive plants from the New York State list of Prohibited and Regulated Invasive Species (6 NYCRR Part 575). The 250-acre campus is within the Catskill Regional Invasive Species Partnership (CRISP) region, and the project was developed in cooperation with CRISP. Students were assigned portions of campus to survey, and many of the 20 invasive species located were horticultural plantings ( e.g., Japanese Barberry, Burning Bush), but in several of the minimally managed woodlots they found extensive Norway Maple and Garlic Mustard in the understory. GPS locations were reported to the state online iMapInvasives dataset. Our current study expands the previous work to include ground-truthing of GPS locations and species identification. We are collaborating with our SUNY Oneonta Facilities Office to initiate an invasive plant removal and replacement plan that includes an outreach event to replace some of the invasive shrubs on campus with native species. One target species is the Japanese Barberry, which is prohibited for sale in New York State. Our plan will replace Japanese Barberry with suitable, deer resistant, native, and non-invasive shrubs over a period of years. To our knowledge, this project is the first full-campus invasive plant survey in the 64 campus SUNY system. We hope that our project will provide a successful template for invasive plant management, and encourage other SUNY campuses to become more sustainable by complying with 6 NYCRR Part 575
Fairness of components in system computations
In this paper we provide a simple characterization of (weak) fairness of components as defined by Costa and Stirling. The study is carried out at system specification level by resorting to a common process description language. This paper follows and exploits similar techniques as those developed in an earlier paper -- where fairness of actions was taken into account and was contrasted to the PAFAS timed operational semantics -- but the characterization of fair executions is based on a new semantics for PAFAS; it makes use of only two copies of each basic action instead of infinitely many and allows for a simple and finite representation of fair executions by using regular expressions. The new semantics can also be understood as describing timed behaviour of systems with upper time bounds. The paper discusses in detail how this new semantics differs from the old one, and why theses changes are necessary to properly capture fairness of components
Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects
Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAIL DR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAIL DR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments. © 2013 Macmillan Publishers Limited All rights reserved
A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy
We investigated the mRNA expression levels of all six antiapoptotic Bcl-2 subfamily members in 68 human cancer cell lines using qPCR techniques and measured the ability of known Bcl-2 inhibitors to induce cell death in 36 of the studied tumor cell lines. Our study reveals that Mcl-1 represents the anti-apoptotic Bcl-2 subfamily member with the highest mRNA levels in the lung, prostate, breast, ovarian, renal, and glioma cancer cell lines. In leukemia/lymphoma and melanoma cancer cell lines, Bcl-2 and Bfl-1 had the highest levels of mRNA, respectively. The observed correlation between the cell killing properties of known Bcl-2 inhibitors and the relative mRNA expression levels of anti-apoptotic Bcl-2 proteins provide critical insights into apoptosis-based anticancer strategies that target Bcl-2 proteins. Our data may explain current challenges of selective Bcl-2 inhibitors in the clinic, given that severe expression of Bcl-2 seems to be limited to leukemia cell lines. Furthermore, our data suggest that in most cancer types a strategy targeted to Mcl-1 inhibition, or combination of Bfl-1 and Mcl-1 inhibition for melanoma, may prove to be more successful than therapies targeting only Bcl-2
Rapid Identification of Bio-Molecules Applied for Detection of Biosecurity Agents Using Rolling Circle Amplification
Detection and identification of pathogens in environmental samples for biosecurity applications are challenging due to the strict requirements on specificity, sensitivity and time. We have developed a concept for quick, specific and sensitive pathogen identification in environmental samples. Target identification is realized by padlock- and proximity probing, and reacted probes are amplified by RCA (rolling-circle amplification). The individual RCA products are labeled by fluorescence and enumerated by an instrument, developed for sensitive and rapid digital analysis. The concept is demonstrated by identification of simili biowarfare agents for bacteria (Escherichia coli and Pantoea agglomerans) and spores (Bacillus atrophaeus) released in field
Mutation Accumulation in a Selfing Population: Consequences of Different Mutation Rates between Selfers and Outcrossers
Currently existing theories predict that because deleterious mutations accumulate at a higher rate, selfing populations suffer from more intense genetic degradation relative to outcrossing populations. This prediction may not always be true when we consider a potential difference in deleterious mutation rate between selfers and outcrossers. By analyzing the evolutionary stability of selfing and outcrossing in an infinite population, we found that the genome-wide deleterious mutation rate would be lower in selfing than in outcrossing organisms. When this difference in mutation rate was included in simulations, we found that in a small population, mutations accumulated more slowly under selfing rather than outcrossing. This result suggests that under frequent and intense bottlenecks, a selfing population may have a lower risk of genetic extinction than an outcrossing population
Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar
We study the process with
initial-state-radiation events produced at the PEP-II asymmetric-energy
collider. The data were recorded with the BaBar detector at center-of-mass
energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454
. We investigate the mass
distribution in the region from 3.5 to 5.5 . Below 3.7
the signal dominates, and above 4
there is a significant peak due to the Y(4260). A fit to
the data in the range 3.74 -- 5.50 yields a mass value
(stat) (syst) and a width value (stat)(syst) for this state. We do not
confirm the report from the Belle collaboration of a broad structure at 4.01
. In addition, we investigate the system
which results from Y(4260) decay
Mutual Regulation of Bcl-2 Proteins Independent of the BH3 Domain as Shown by the BH3-Lacking Protein Bcl-xAK
The BH3 domain of Bcl-2 proteins was regarded as indispensable for apoptosis induction and for mutual regulation of family members. We recently described Bcl-xAK, a proapoptotic splice product of the bcl-x gene, which lacks BH3 but encloses BH2, BH4 and a transmembrane domain. It remained however unclear, how Bcl-xAK may trigger apoptosis
Acute myeloid leukemia of donor origin after allogeneic stem cell transplantation from a sibling who harbors germline XPD and XRCC3 homozygous polymorphisms
A 54-year-old woman was diagnosed with infiltrative ductal breast carcinoma. Two years after treatment, the patient developed an acute myeloid leukemia (AML) which harbored del(11q23) in 8% of the blast cells. The patient was submitted for allogeneic stem cell transplantation (aSCT) from her HLA-compatible sister. Ten months after transplantation, she relapsed with an AML with basophilic maturation characterized by CD45low CD33high, CD117+, CD13-/+, HLA Drhigh, CD123high, and CD203c+ blast cells lacking expression of CD7, CD10, CD34, CD15, CD14, CD56, CD36, CD64, and cytoplasmic tryptase. Karyotype analysis showed the emergence of a new clone with t(2;14) and FISH analysis indicated the presence of MLL gene rearrangement consistent with del(11q23). Interestingly, AML blast cell DNA tested with microsatellite markers showed the same pattern as the donor's, suggesting that this AML emerged from donor cells. Additionally, polymorphisms of the XPA, XPD, XRCC1, XRCC3 and RAD51 DNA repair genes revealed three unfavorable alleles with low DNA repair capacity
- …