1,501 research outputs found

    Carbohydrate antigens in nipple aspirate fluid predict the presence of atypia and cancer in women requiring diagnostic breast biopsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of this prospective study was to determine (a) concentrations of the carbohydrate biomarkers Thomsen Friedenreich (TF) antigen and its precursor, Tn antigen, in nipple discharge (ND) collected from women requiring biopsy because of a suspicious breast lesion; and (b) if concentration levels predicted pathologic diagnosis.</p> <p>Methods</p> <p>Adult women requiring biopsy to exclude breast cancer were enrolled and ND obtained. The samples from 124 women were analyzed using an anti-TF and anti-Tn monoclonal antibodies in direct immunoassay.</p> <p>Results</p> <p>The highest median concentration in ND for TF and Tn was in women with ductal carcinoma <it>in situ </it>(DCIS). TF was higher in women with 1) cancer (DCIS or invasive) vs. either no cancer (atypia or benign pathology, p = .048), or benign pathology (p = .018); and 2) abnormal (atypia or cancer) versus benign pathology (p = .016); and was more predictive of atypia or cancer in post- compared to premenopausal women. Tn was not predictive of disease. High TF concentration and age were independent predictors of disease, correctly classifying either cancer or abnormal vs. benign pathology 83% of the time in postmenopausal women.</p> <p>Conclusions</p> <p>TF concentrations in ND were higher in women with precancer and cancer compared to women with benign disease, and TF was an independent predictor of breast atypia and cancer. TF may prove useful in early breast cancer detection.</p

    Individual working memory capacity is uniquely correlated with feature-based attention when combined with spatial attention

    Get PDF
    A growing literature suggests that working memory and attention are closely related constructs. Both involve the selection of task-relevant information, and both are characterized by capacity limits. Furthermore, studies using a variety of methodological approaches have demonstrated convergent working memory and attention-related processing at the individual, neural and behavioral level. Given the varieties of both constructs, the specific kinds of attention and WM must be considered. We find that individuals’ working memory capacity (WMC) uniquely interacts with feature-based attention when combined with spatial attention in a cuing paradigm (Posner, 1980). Our findings suggest a positive correlation between WM and feature-based attention only within the spotlight of spatial attention. This finding lends support to the controlled attention view of working memory by demonstrating that integrated feature-based expectancies are uniquely correlated with individual performance on a working memory task

    Dissociated Mechanisms of Extracting Perceptual Information into Visual Working Memory

    Get PDF
    The processing mechanisms of visual working memory (VWM) have been extensively explored in the recent decade. However, how the perceptual information is extracted into VWM remains largely unclear. The current study investigated this issue by testing whether the perceptual information was extracted into VWM via an integrated-object manner so that all the irrelevant information would be extracted (object hypothesis), or via a feature-based manner so that only the target-relevant information would be extracted (feature hypothesis), or via an analogous processing manner as that in visual perception (analogy hypothesis).High-discriminable information which is processed at the parallel stage of visual perception and fine-grained information which is processed via focal attention were selected as the representatives of perceptual information. The analogy hypothesis predicted that whereas high-discriminable information is extracted into VWM automatically, fine-grained information will be extracted only if it is task-relevant. By manipulating the information type of the irrelevant dimension in a change-detection task, we found that the performance was affected and the ERP component N270 was enhanced if a change between the probe and the memorized stimulus consisted of irrelevant high-discriminable information, but not if it consisted of irrelevant fine-grained information.We conclude that dissociated extraction mechanisms exist in VWM for information resolved via dissociated processes in visual perception (at least for the information tested in the current study), supporting the analogy hypothesis

    Remote preconditioning in normal and hypertrophic rat hearts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of our study was to investigate whether remote preconditioning (RPC) improves myocardial function after ischemia/reperfusion injury in both normal and hypertrophic isolated rat hearts. This is the first time in world literature that cardioprotection by RPC in hypertrophic myocardium is investigated.</p> <p>Methods</p> <p>Four groups of 7 male Wistar rats each, were used: Normal control, normal preconditioned, hypertrophic control and hypertrophic preconditioned groups. Moderate cardiac hypertrophy was induced by fludrocortisone acetate and salt administration for 30 days. Remote preconditioning of the rat heart was achieved by 20 minutes transient right hind limb ischemia and 10 minutes reperfusion of the anaesthetized animal. Isolated Langendorff-perfused animal hearts were then subjected to 30 minutes of global ischemia and reperfusion for 60 minutes. Contractile function and heart rhythm were monitored. Preconditioned groups were compared to control groups.</p> <p>Results</p> <p>Left ventricular developed pressure (LVDP) and the product LVDP × heart rate (HR) were significantly higher in the hypertrophic preconditioned group than the hypertrophic control group while left ventricular end diastolic pressure (LVEDP) and severe arrhythmia episodes did not differ. Variances between the normal heart groups were not significantly different except for the values of the LVEDP in the beginning of reperfusion.</p> <p>Conclusions</p> <p>Remote preconditioning seems to protect myocardial contractile function in hypertrophic myocardium, while it has no beneficial effect in normal myocardium.</p

    Visual Working Memory Capacity Does Not Modulate the Feature-Based Information Filtering in Visual Working Memory

    Get PDF
    Background: The limited capacity of visual working memory (VWM) requires us to select the task relevant information and filter out the irrelevant information efficiently. Previous studies showed that the individual differences in VWM capacity dramatically influenced the way we filtered out the distracters displayed in distinct spatial-locations: low-capacity individuals were poorer at filtering them out than the high-capacity ones. However, when the target and distracting information pertain to the same object (i.e., multiple-featured object), whether the VWM capacity modulates the featurebased filtering remains unknown. Methodology/Principal Findings: We explored this issue mainly based on one of our recent studies, in which we asked the participants to remember three colors of colored-shapes or colored-landolt-Cs while using two types of task irrelevant information. We found that the irrelevant high-discriminable information could not be filtered out during the extraction of VWM but the irrelevant fine-grained information could be. We added 8 extra participants to the original 16 participants and then split the overall 24 participants into low- and high-VWM capacity groups. We found that regardless of the VWM capacity, the irrelevant high-discriminable information was selected into VWM, whereas the irrelevant fine-grained information was filtered out. The latter finding was further corroborated in a second experiment in which the participants were required to remember one colored-landolt-C and a more strict control was exerted over the VWM capacity

    Express Attentional Re-Engagement but Delayed Entry into Consciousness Following Invalid Spatial Cues in Visual Search

    Get PDF
    Background: In predictive spatial cueing studies, reaction times (RT) are shorter for targets appearing at cued locations (valid trials) than at other locations (invalid trials). An increase in the amplitude of early P1 and/or N1 event-related potential (ERP) components is also present for items appearing at cued locations, reflecting early attentional sensory gain control mechanisms. However, it is still unknown at which stage in the processing stream these early amplitude effects are translated into latency effects. Methodology/Principal Findings: Here, we measured the latency of two ERP components, the N2pc and the sustained posterior contralateral negativity (SPCN), to evaluate whether visual selection (as indexed by the N2pc) and visual-short term memory processes (as indexed by the SPCN) are delayed in invalid trials compared to valid trials. The P1 was larger contralateral to the cued side, indicating that attention was deployed to the cued location prior to the target onset. Despite these early amplitude effects, the N2pc onset latency was unaffected by cue validity, indicating an express, quasiinstantaneous re-engagement of attention in invalid trials. In contrast, latency effects were observed for the SPCN, and these were correlated to the RT effect. Conclusions/Significance: Results show that latency differences that could explain the RT cueing effects must occur after visual selection processes giving rise to the N2pc, but at or before transfer in visual short-term memory, as reflected by th

    Temporal Brain Dynamics of Multiple Object Processing: The Flexibility of Individuation

    Get PDF
    The ability to process concurrently multiple visual objects is fundamental for a coherent perception of the world. A core component of this ability is the simultaneous individuation of multiple objects. Many studies have addressed the mechanism of object individuation but it remains unknown whether the visual system mandatorily individuates all relevant elements in the visual field, or whether object indexing depends on task demands. We used a neural measure of visual selection, the N2pc component, to evaluate the flexibility of multiple object individuation. In three ERP experiments, participants saw a variable number of target elements among homogenous distracters and performed either an enumeration task (Experiment 1) or a detection task, reporting whether at least one (Experiment 2) or a specified number of target elements (Experiment 3) was present. While in the enumeration task the N2pc response increased as a function of the number of targets, no such modulation was found in Experiment 2, indicating that individuation of multiple targets is not mandatory. However, a modulation of the N2pc similar to the enumeration task was visible in Experiment 3, further highlighting that object individuation is a flexible mechanism that binds indexes to object properties and locations as needed for further object processing

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    Get PDF
    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms
    corecore