109 research outputs found

    Bone Morphogenetic Proteins and Their Antagonists in Skin and Hair Follicle Biology

    Get PDF
    Bone morphogenetic proteins (BMP) are members of the transforming growth factor-β superfamily regulating a large variety of biologic responses in many different cells and tissues during embryonic development and postnatal life. BMP exert their biologic effects via binding to two types of serine/threonine kinase BMP receptors, activation of which leads to phosphorylation and translocation into the nucleus of intracellular signaling molecules, including Smad1, Smad5, and Smad8 (“canonical” BMP signaling pathway). BMP effects are also mediated by activation of the mitogen-activated protein (MAP) kinase pathway (“noncanonical” BMP Signaling pathway). BMP activity is regulated by diffusible BMP antagonists that prevent BMP interactions with BMP receptors thus modulating BMP effects in tissues. During skin development, BMPs its receptors and antagonists show stringent spatiotemporal expressions patterns to achieve proper regulation of cell proliferation and differentiation in the epidermis and in the hair follicle. In normal postnatal skin, BMP are involved in the control of epidermal homeostasis, hair follicle growth, and melanogenesis. Furthermore, BMP are implicated in a variety of pathobiologic processes in skin, including wound healing, psoriasis, and carcinogenesis. Therefore, BMPs represent new important players in the molecular network regulating homeostasis in normal and diseased skin. Pharmacologic modulation of BMP signaling may be used as a new approach for managing skin and hair disorders

    Edar Signaling in the Control of Hair Follicle Development

    Get PDF
    Ectodysplasin receptor Edar and its ligand Eda A1, as well as their related receptor Xedar and ligand Eda A2, are recently discovered members of the tumor necrosis factor superfamily that signal predominantly through the nuclear factor-κB and c-jun N-terminal kinases pathways. Mutations in genes that encode proteins involved in Edar signaling pathway cause hypohidrotic ectodermal displasias in humans and mice and characterized by severe defects in development of ectodermal appendages including hairs, teeth, and exocrine glands. Here, we summarize the current knowledge of molecular mechanisms underlying the involvement of Edar signaling pathway in controlling hair follicle (HF) development and cycling. Genetic and experimental studies suggest that Edar signaling is involved in the control of cell fate decision in embryonic epidermis, as well as in the regulation of cell differentiation programs in the HF. Loss or gain of Edar signaling affects the initiation of several HF types (guard and zig-zag HF), hair shaft formation, as well as sebaceous gland morphology. We also review data on the cross-talk between Edar and Wnt, transforming growth factor-β/bone morphogenic protein/activin, and Shh signaling pathways in the control of HF development and cycling

    The Fate of Hair Follicle Melanocytes During the Hair Growth Cycle

    Get PDF
    The fate of the follicular pigmentary unit during the hair growth cycle has long been one of the great enigmas of both hair follicle and pigment cell biology. Although melanocytes are distributed in several different compartments of the anagen hair follicle, melanogenically active cells are located only in the hair bulb, where they are directly involved in hair shaft pigmentation. These pigment cells are readily detectable only when they become melanogenically active during anagen III of the hair growth cycle. Thus, their status during hair follicle regression (catagen), when melanogenesis is switched off, until they re-appear again as pigment-producing cells in the anagen III hair follicle, has remained poorly defined. Historically, it has been proposed that hair bulb melanocytes adopt a self-perpetuating, catagen-resistant strategy of de-differentiation during hair follicle regression and re-differentiation upon entry into a new anagen phase; however, this explanation remains problematic in the absence of evidence for de-differentiation/re-differentiation plasticity in most nonmalignant cell systems

    Neural Mechanisms of Hair Growth Control

    Get PDF
    Clinical and experimental observations have long suggested that skin nerves have “trophic” functions in hair follicle development, growth and/or cycling, even though the molecular and cellular basis of the underlying neuroepithelial interactions has remained obscure. Here, we critically review currently available evidence arguing in favor of or against the existence of neural mechanisms of hair growth control, and outline why the murine hair cycle provides an excellent experimental system for characterizing and manipulating piloneural interactions. Summarizing relevant, recent data from the C57BL/6 mouse model, it is pointed out that the sensory and autonomic innervation of normal pelage hair follicles, the substance P skin content, and cutaneous mast cell-nerve contacts show striking changes during synchronized hair follicle cycling. Furthermore, the murine hair follicle appears to be both a source and a target of neurotrophins, whereas neuropharmacologic manipulations alter murine hair follicle cycling in vivo. For example, anagen is induced by substance P or adrenocorticotropin (ACTH), and by the experimentally triggered release of neuropeptides from sensory nerves and of neurotransmitters from adrenergic nerves. Taken together, this argues in favor of neuroepithelial interactions as regulatory elements in hair growth control and suggests that the study of piloneural interactions promises important insights into general principles of neuroepithelial communication, namely during epithelial morphogenesis and remodeling. We delineate a hypothetical working model of piloneural interactions and propose that targeted manipulations deserve systematic exploration as a novel strategy for managing hair growth disorders. Journal of Investigative Dermatology Symposium Proceedings 2:61–68, 199

    Hair-Cycle-Associated Remodeling of the Peptidergic Innervation of Murine Skin, and Hair Growth Modulation by Neuropeptides

    Get PDF
    As the neuropeptide substance P can manipulate murine hair growth in vivo, we here further studied the role of sensory neuropeptides in hair follicle biology by determining the distribution and hair-cycle-dependent remodeling of the sensory innervation in C57BL/6 mouse back skin. Calcitonin-gene-related peptide, substance P, and peptide histidine methionine (employed as vasoactive intestinal peptide marker) were identified by immunohistochemistry. All of these markers immunolocalized to bundles of nerve fibers and to single nerve fibers, with distinct distribution patterns and major hair-cycle-associated changes. In the epidermis and around the distal hair follicle and the arrector pili muscle, only calcitonin-gene-related peptide immunoreactive nerve fibers were visualized, whereas substance P and peptide histidine methionine immunoreactive nerve fibers were largely restricted to the dermis and subcutis. Compared to telogen skin, the number of calcitonin-gene-related peptide, substance P, and peptide histidine methionine immunoreactive single nerve fibers increased significantly (p < 0.01) during anagen, including around the bulge region (the seat of epithelial stem cells). Substance P significantly accelerated anagen progression in murine skin organ culture, whereas calcitonin-gene-related peptide and a substance-P-inhibitory peptide inhibited anagen (p < 0.05). The inhibitory effect of calcitonin-gene-related peptide could be antagonized by coadministrating substance P. In contrast to substance P, calcitonin-gene-related peptide failed to induce anagen when released from subcutaneous implants. This might reflect a differential functional assignment of the neuropeptides calcitonin-gene-related peptide and substance P in hair growth control, and invites the use of neuropeptide receptor agonists and antagonists as novel pharmacologic tools for therapeutic hair growth manipulation

    p63 transcription factor regulates nuclear shape and expression of nuclear envelope-associated genes in epidermal keratinocytes

    Get PDF
    The maintenance of a proper nuclear architecture and 3D organization of the genes, enhancer elements and transcription machinery plays an essential role in tissue development and regeneration. Here we show that in the developing skin, epidermal progenitor cells of mice lacking p63 transcription factor display alterations in the nuclear shape accompanied by marked decrease in expression of several nuclear envelop-associated components (Lamin B1, Lamin A/C, SUN1, Nesprin-3, Plectin) compared to controls. Furthermore, ChIP-qPCR assay showed enrichment of p63 on Sun1, Syne3 and Plec promoters, suggesting them as p63 targets. Alterations in the nuclei shape and expression of nuclear envelope-associated proteins were accompanied by altered distribution patterns of the repressive histone marks H3K27me3, H3K9me3 and heterochromatin protein 1- alpha in p63-null keratinocytes. These changes were also accompanied by downregulation of the transcriptional activity and relocation of the keratinocyte-specific gene loci away from the sites of active transcription towards the heterochromatin-enriched repressive nuclear compartments in p63-null cells. These data demonstrate functional links between the nuclear envelope organization, chromatin architecture and gene expression in keratinocytes and suggest nuclear envelope-associated genes as important targets mediating p63-regulated gene expression programme in the epidermis

    Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?

    Get PDF
    YesBackground and Objective Visible light has beneficial effects on cutaneous wound healing, but the role of potential photoreceptors in human skin is unknown. In addition, inconsistency in the parameters of blue and red light‐based therapies for skin conditions makes interpretation difficult. Red light can activate cytochrome c oxidase and has been proposed as a wound healing therapy. UV‐blue light can activate Opsin 1‐SW, Opsin 2, Opsin 3, Opsin 4, and Opsin 5 receptors, triggering biological responses, but their role in human skin physiology is unclear. Materials and Methods Localization of Opsins was analyzed in situ in human skin derived from face and abdomen by immunohistochemistry. An ex vivo human skin wound healing model was established and expression of Opsins confirmed by immunohistochemistry. The rate of wound closure was quantitated after irradiation with blue and red light and mRNA was extracted from the regenerating epithelial tongue by laser micro‐dissection to detect changes in Opsin 3 (OPN3) expression. Retention of the expression of Opsins in primary cultures of human epidermal keratinocytes and dermal fibroblasts was confirmed by qRT‐PCR and immunocytochemistry. Modulation of metabolic activity by visible light was studied. Furthermore, migration in a scratch‐wound assay, DNA synthesis and differentiation of epidermal keratinocytes was established following irradiation with blue light. A role for OPN3 in keratinocytes was investigated by gene silencing. Results Opsin receptors (OPN1‐SW, 3 and 5) were similarly localized in the epidermis of human facial and abdominal skin in situ. Corresponding expression was confirmed in the regenerating epithelial tongue of ex vivo wounds after 2 days in culture, and irradiation with blue light stimulated wound closure, with a corresponding increase in OPN3 expression. Expression of Opsins was retained in primary cultures of epidermal keratinocytes and dermal fibroblasts. Both blue and red light stimulated the metabolic activity of cultured keratinocytes. Low levels of blue light reduced DNA synthesis and stimulated differentiation of keratinocytes. While low levels of blue light did not alter keratinocyte migration in a scratch wound assay, higher levels inhibited migration. Gene silencing of OPN3 in keratinocytes was effective (87% reduction). The rate of DNA synthesis in OPN3 knockdown keratinocytes did not change following irradiation with blue light, however, the level of differentiation was decreased. Conclusions Opsins are expressed in the epidermis and dermis of human skin and in the newly regenerating epidermis following wounding. An increase in OPN3 expression in the epithelial tongue may be a potential mechanism for the stimulation of wound closure by blue light. Since keratinocytes and fibroblasts retain their expression of Opsins in culture, they provide a good model to investigate the mechanism of blue light in wound healing responses. Knockdown of OPN3 led to a reduction in early differentiation of keratinocytes following irradiation with blue light, suggesting OPN3 is required for restoration of the barrier function. Understanding the function and relationship of different photoreceptors and their response to specific light parameters will lead to the development of reliable light‐based therapies for cutaneous wound healing.European Commission 7th Framework Programme for Research and Technical Development - Marie Curie Innovative Training Networks (ITN), Grant agreement no.: 60788

    Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium

    Get PDF
    During development, multipotent progenitor cells establish lineage-specific programmers of gene activation and silencing underlying their differentiation into specialized cell types. We show that the Polycomb component Cbx4 serves as a critical determinant that maintains the epithelial identity in the developing epidermis by repressing nonepidermal gene expression programs. Cbx4 ablation in mice results in a marked decrease of the epidermal thickness and keratinocyte (KC) proliferation associated with activation of numerous neuronal genes and genes encoding cyclin-dependent kinase inhibitors (p16/p19 and p57). Furthermore, the chromodomain- and SUMO E3 ligase–dependent Cbx4 activities differentially regulate proliferation, differentiation, and expression of nonepidermal genes in KCs. Finally, Cbx4 expression in KCs is directly regulated by p63 transcription factor, whereas Cbx4 overexpression is capable of partially rescuing the effects of p63 ablation on epidermal development. These data demonstrate that Cbx4 plays a crucial role in the p63-regulated program of epidermal differentiation, maintaining the epithelial identity and proliferative activity in KCs via repression of the selected nonepidermal lineage and cell cycle inhibitor genes
    corecore