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Clinical and experimental observations have long 
suggested that skin nerves have "trophic" functions 
in hair follicle developDlent, growth and/or cycling, 
even though the Dlolecular and cellular basis of the 
underlying neuroepithelial interactions has reDlained 
obscure. Here, we critically review currently avail
able evidence arguing in favor of or against the 
existence of neural DlechanisDls of hair growth con
trol, and outline why the Dlurine hair cycle provides 
an excellent experimental systeDl for characterizing 
and Dlanipulating piloneural interactions. SUDlDla
rizing relevant. recent data frODl the CS7BLl6 Dlouse 
model, it is pointed out that the sensory and auto
nontic innervation of norntal pelage hair follicles. the 
substance P skin content. and cutaneous Dlast cell
nerve contacts show striking changes during syn
chronized hair follicle cycling. Furtherntore. the Diu
rine hair follicle appears to be both a source and a 
target of neurotrophins. whereas neuropharntaco-

"TROPHIC" ROLES OF PERIPHERAL NERVES 

Cutaneous nerve fibers have sensory functions, control the vaso
motor tonus, and regulate the secretory activities of exocrine glands 
(Smith, 1996). They also exert a number of less apparent, yet 
important, effector functions, which include the modulation of 
multiple inflammatory, proliferative, and reparative cutaneOus pro
cesses (Ansel et aI, 1996). A wide array of signaling molecules 
released by sensory nerve fibers, and of corresponding specific 
receptors, is now recognized as the basis of such efferent functions 
of skin nerves (see this supplement). 

To dermatologists, these have mostly been of interest in the 
context of "neurogenic inflammation," namely during hyper
proliferative, inflanunatory skin diseases like atopic eczema and 
psoriasis; in addition, neurotrophins (NTs) and neuropeptides 
(NPs) are increasingly appreciated as modulators of wound healing 
and tissue repair (Ansel et ai, 1996; Baraniuk, 1997). The skin 
epithelium can also generate NTs of the nerve growth factor family 
[e.g., nerve growth factor (NGF), NT-3, brain-derived neurotro
phic factor (BDNF) , NT-4] , thus influencing the development, 
sprouting, and survival of nerve fibers, particularly during embry
onal skin development and under wound healing conditions in 
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neurotransmitter; p75NTR, p75 low affinity neurotrophln receptor; SP, 
substance P; Trk, tyrosiue kiuase. 

logic Dlanipulations alter Dlurine han- follicle cycling 
in vivo. For exantple. anagen is induced by substance 
P or adrenocorticotropin (ACTH). and by the exper
imentally triggered release of neuropeptides frODl 
sensory nerves and of neurotransDlitters frODl adren
ergic nerves. Taken together. this argues in favor of 
neuroepithelial interactions as regulatory eleDlents 
in hair growth control and suggests that the study of 
piloneural interactions proDlises intportant insights 
into general principles of neuroepithelial CODlDlUni
cation. naDlely during epithelial Dlorphogenesis and 
reDlodeling. We delineate a hypothetical working 
Dlodel of piloneural interactions and propose that 
targeted Dlanipulations deserve systeDlatic explora
tion as a novel strategy for Dlanaging hair growth 
disorders. Key words: hair folliclelnervelneuropeptideslneu
rotrophinslneurotransmitters. Journal of Investigative Der
matology Symposium Proceedings 2:61-68, 1997 

adult skin (Davies et ai, 1987; Di Marco et aI, 1991; Emfors et aI, 
1992; Davis et aI, 1993, 1994; Albers et aI, 1994; Constantinou et ai, 
1994; English et ai, 1994; Pincelli et aI, 1994; Albers et ai, 1996; 
Lewin and Barde, 1996). 

This has infused new life into an ancient concept, which stipu
lates that peripheral nerves have a "trophic" role in epithelial tissue 
growth. Simple clinical observations had long suggested this: in the 
skin, epidermal atrophy, ulceration, and dysfunction or loss of skin 
appendages routinely occur as a consequence of traumatic, inflam
matory, toxic, or degenerative damage to peripheral nerves (Sin
clair, 1973; Walton, 1984). What are the molecular and cellular 
correlates of the neuroepithelial interactions in the skin, however, 
that underlie such "trophic" functions of peripheral nerves, and 
how much of these phenomena only reflect neurogenic changes in 
skin perfusion (see Table I)? 

THE HAIR FOLLICLE AS A MODEL FOR STUDYING 
NEUROEPITHELIAL INTERACTIONS 

Although this is not yet widely enough recognized, few systems can 
rival the hair follicle (HF) as a model for addressing these questions, 
and for dissecting "neurotrophic" effects on epithelial tissue growth 
in general. The interactions between the HF and its perifollicular 
neural network (Fig 1) offer an intriguing experimental system for 
the analysis and manipulation of neuroepithelial interactions during 
epithelial morphogenesis and remodeling under physiologic and 
pathologic circumstances. Furthermore, this model system allows 
one to explore novel neuropharmacologic strategies for the thera
peutic manipulation of epithelial tissue growth in general and of 
hair growth in particular. 

In addition, the HF itself is an exemplary epithelial-mesenchy-
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Table I. How Peripheral Nerves May Exert 
"Trophic" Functions on Skin Epithelium 

Cutaneous nerve fibers 
--+ Control vasomotor tonus (thus regulating nutrient and O2 supply to 

epithelium) 
--+ May direcdy alter endothelial cell functions and may stimulate 

angiogenesis by release of NPs like SP 
--+ Modulate KC functions by releasing NPs andlor NTMs, which 

a. Direcdy stimulate KC receptors for NPs and NTMs 
b. Indirecdy aH'ect KCs via altering the secretory activities of 

mesenchymal cells (e.g., MCs, macrophages, and fibroblasts) 
--+ May also secrete NTs 

Clia cells of cutaneous nerve fibers (&hwann cells) 
--+ Secrete growth factors which may stimulate corresponding receptors 

expressed by KCs 

For references, see Haegerstrand et ai, 1989; Ziche et ai, 1990; Rozengurt, 1991; 
SchaUreuter et Ill, 1992, 1993; Grandu .1 ai, 1993; Paus el ai, 1994c, 1995; Ansel tl ai, 
1996; see also Ansel et ai, Bothwell, Grandu, Pincelli and Yaar, 1997) 

mal-neuroectodermal interaction unit because it generates pig
mented hair shafts as the result of tighdy coordinated interactions 
between epithelial cells (follicle keratinocytes), specialized fibro
blasts (dermal papilla cells), and neuroectodermal cells (follicle 
melanocytes) (paus, 1996). The HF is the most densely imtervated 
structure of mammalian skin, and its imtervation has been exten
sively characterized in many functionally distinct follicle types of 
diverse species (cf. Winkelmann, 1960; Yamamoto et ai, 1966; 
Munger and Ide, 1988; Winkelmann, 1988; Hashimoto et ai, 1990; 
Ebara et ai, 1992; Rice et ai, 1993; Halata, 1993; Hordinsky and 
Ericson, 1996). Together with its accessibility, all this designates the 
HF an ideal study object for neurobiologic analyses. 

The biologically most intriguing feature of the HF is that it 
spontaneously undergoes life-long, cyclic transformations from a 
state of relative resting (telogen) to a stage of rapid morphogenesis, 
intense follicle keratinocyte proliferation, and hair shaft production 
(anagen) (Fig 1). Anagen is suddenly followed by the highly 
controlled regression of the proximal, cycling portion of the HF 
(catagen), which is largely based on keratinocyte apoptosis. This 
cyclic growth and regression activity is associated with significant 
alterations in the thickness as well as in the extracellular matrix 
composition and architecture of all skin compartments, most 
markedly in species with synchronized HF cycling (Chase, 1954; 
Hardy, 1992; Paus, 1996, Stenn et ai, 1996). 

On this background, we are challenged to define whether skin 
nerves and signaling molecules emanating from them are involved 
in the morphogenesis and cyclic remodeling of the HF, whether the 
hair cycle is associated with alterations in HF imtervation, and 
whether the HF influences the structure and function of cutaneous 
nerves. In the following, this will be discussed, with a focus on 
potential neural mechanisms of hair growth control. 

NEURAL MECHANISMS OF HAIR GROWTH CONTROL: 
PRO AND CONTRA 

Every physician dealing with patients that complain of hair growth 
disorders sooner or later will encounter some who firmly believe 
that their hair loss results from chronic "stress" or a stressful life 
event, and the belief that "nerves" and "stress" affect hair growth 
remains deeply rooted in the folklore, literature, and humor of 
many cultures. This concept is actually as old as the beginnings of 
systematic hair research and is nicely illustrated by the so-called 
"trophoneurotic" or "psychogenic" theories on the etiology of 
alopecia areata, which was long believed to represent a communi
cation disorder betwen HFs and their imtervation (e.g., Joseph, 
1921; cf. Simpson, 1991). In fact, the mysterious phenomenon of 
"overnight graying," ever so rarely seen in association with ex
treme psychoemotional stressors, may represent a fulminant attack 
of the diifuse variant of alopecia areata, which selectively attacks 
pigmented anagen HFs, but spares pre-existent graying or white 
hair (cf. Whidock, 1976; Simpson, 1991; Paus et aI, 1994t). 

Nonetheless, despite multiple case reports in the literature that 
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attempt to link stressful life events to the onset of telogen effluvium 
or alopecia areata, in our experience, such a connection can only be 
made in a small minority of patients with effluvium or alopecia, and 
very liwe, if any, convincing evidence has been produced to 
document that psychologic factors really induce hair loss (Whit
lock, 1976). Overproduction of corticotropin-releasing hormone in 
transgenic mice, which show abnormally high ACTH and glu
cocorticoid serum levels and are considered a good model for 
chronic "stress," is indeed associated with hair loss (Stenzel-Poore 
et aI, 1996). This may be related, however, to the hair growth
inhibitory effects of glucocorticosteroids (Stenn et aI, 1993, Paus el 
al, 1994a). 

As suntmarized in Table n, the currendy available evidence pro 
and contra neural mechanisms of hair growth control is similarly 
ambiguous. For example, HFs can be successfully transplanted from 
one skin location to another, independent of their original imter
vation and vasculature (Unger, 1995). Transplanted HFs, however, 
eventually become re-imtervated from the host skin site, and it is 
unknown whether this affects their long-term survival or cycling. 
HFs can also grow in organ culture, where they continue to 
produce a hair shaft and may even traverse a section of the hair 
cycle (e.g., Li et aI, 1992b, 1992c; Philpott et aI, 1994; Philpott and 
Kealey, 1994; Philpott et aI, 1996). Nonetheless, this is limited to a 
rather short timespan, and progression through a full hair cycle in 
vitro has never been proved. 

Likewise, even though rudimentary folliculoids can develop in 

Figure 1. Schematic representation of perifomcular innervation in 
CS7BU6 mouse skin (modified from Botchkarev et aI, 1997a). The 
figure depicts three selected hair cycle stages, showing a resting follicle 
(telogen), a follicle that is in the early phase of the active growth stage of the 
hair cycle (anagen II), and a mature anagen VI follicle, which generates a 
pigmented hair shaft. Note that nerve fibers in murine skin are arranged in 
three horizontal plexus (SEP, DCP, SCP), which feed fibers into two 
distinct perifollicular neural networks (FNA, FNB). The innervation details 
listed in the figure summarize the PGP 9.5 immunoreactivity, analyzed by 
confocal microscopy, in multiple skin sections (Botchkarev et ai, 1997a). 
SEP, subepidermal neural plexus; DCP, deep cutaneous neural plexus; SCP, 
subcutaneous neural plexus; FNA, follicular network A; FNB, follicular 
network B; 1+ B, isthmus and bulge region of the ORS; SG, sebaceous 
gland; APM, arrector pili muscle; IRS, inner root sheath; ORS, outer root 
sheath; HS, hair shaft; Me!., HF melanocytes; HM, hair matrix. 
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the absence of skin nerves, e.g., in spheroid raft cultures of human 
embryonal skin (Holbrook and Minami, 1991), they never mature 
into hair shaft-producing and cycling HFs. Also, follicles in early 
stages of morphogenesis that are enzymatically dispersed from 
neonatal mouse skin can be transplanted into appropriate tissue 
beds and begin to grow largely normal hair shafts (Lichti et aI, 
1993). It is unknown, however, whether these transplanted hair 
pegs need to receive any NP, NT, or neurotransmitter (NTM) 
signals from the recipient skin in order to function normally. 

Typically, damage to dorsal roots or peripheral nerves, limb 
paralysis, causalgia, and syringomyelia are associated with follicle 
atrophy in the corresponding zone of skin innervation (Sinclair, 
1973). In dogs, hair growth retardation occurs after experimental 
sectioning of peripheral nerves and dorsal roots (Kobayashi et aI, 
1958). In rat skin, hair growth retardation and a decrease in hair 
shaft thickness, associated with alopecia, develop after sensory 
denervation by neonatal capsaicin treatment (Maggi et aI, 1987). In 
neonatal mouse skin, experimental noradrenaline depletion of 
sympathetic nerve fibers causes localized disturbances of HF mor
phogenesis as well as alopecia (Asada-Kubota, 1995). 

Peripheral nerve damage can also induce increased hair growth: 
major thoracic surgery can be followed by a unilateral hypertricho
sis (Uhemitrichosis"), which can be reproduced in dogs and does 
not seem to result from an increased blood Bow (e.g., due to the 
severance of sympathetic nerve fibers) (Kobayshi et aI, 1958). Also, 
hyperplasia of the remaining dorsal root ganglia following partial 
neurectomy in opossum pups leads to skin hyperinnervation, an 
increase in epidermal thickness, and a precocious development of 
HFs Oones and Munger, 1987). Experimentally induced sympa
thetic hyper-innervation of blood vessels in rabbit skin may also be 
accompanied by localized, excessive hair growth (cf. Crowe et aI, 
1993). 

Finally, there is a relative hyperinnervation of the distal HF, 
whose neural network exhibits a corona of longitudinally and 
circularly oriented nerve fibers located at the level of the follicle 
isthmus and bulge (Winkelmann, 1960; Halata, 1993) (cf. Figs 1, 
2). Traditionally, this has been explained with the functions of the 
HF as a sensory, tactile organ: the distal follicle experiences the 
largest degree of hair shaft displacement by external objects such as 
insects or fingertips so that hair shaft displacement is most effec
tively recorded at this follicular level. The bulge region, however, 
contains epithelial stem cells (Cotsarelis et aI, 1990). Given the 
prominence of peptidergic nerve fibers around this follicle region 
(Hartschuh et aI, 1983; Bjorklund et aI, 1986; Karanth et aI, 1991; 
Katoh et aI, 1991; Ebara et aI, 1992; Karanth, 1994) and in view of 
the recognized growth-modulatory properties of many NPs and 
NTs (see this supplement; Rozengurt, 1991, Paus et aI, 1994c, 
1995; Ansel et aI, 1996; Crawley and McLean, 1996; Baraniuk, 
1997), it is reasonable to ask whether the peculiar fiber arrange
ment around the distal outer root sheath, at least in part, serves to 

Table n. Neural Mechanisms of Hair Growth Control? 
Arguments Pro and Contra 

Contra 
Development of follicle rudiments in raft cultures of embryonal skin 
Hair growth even after follicle transplantation and in organ culture 

Pro 
Abnormal hair growh (e.g., follicle atrophy) after neuralectomy, limb 

paralysis, nerve degeneration 
"Hemitrichosis" after thoracic surgery 
Precocious follicle development after neuralectomy 
"Stress" -induced alopecia areata 
"Overnight" graying 
Unusual density and arrangement of follicle innervation in stem cell 

region 

For references, see Kobayashi et ai, 1958; Winkelmann, 1960; Giacometti and 
Montagna, 1967; Whidock, 1976; Jones and Munger, 1987; Hashimoto et ai, 1990; 
Holbrook and Minami, 1991; Li et aI, 1992b, 1992c; Halata, 1993; Licbti et ai, 1993; 
Philpott et ai, 1994. 
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Figure 2. Circular and longitudinal perifollicular nerve fibers 
(follicular network B -FNB). PGP 9.S-immunoreactive longitudinal and 
circular fibers of the FNB of an anagen VI pelage follicle in the back skin of 
CS7BL/6 mouse skin are shown (confocal microscopy). (cf. Botchkarev et 
aI, 1997a) Scale bar, 20 /Lm. 

modulate epithelial stem cell functions by the controlled release of 
NPs and NTs. 

THE MURINE HAIR CYCLE AS A MODEL: 
LEADS AND LESSONS FROM C57BLl6 MICE 

In contrast to the mosaic cyling of human HFs, follicle cycling in 
the first months of murine postnatal life is well-synchronized. Also, 
follicle morphogenesis can still be studied in neonatal mouse skin 
because most pelage HFs develop in the peri- and neonatal period 
(Hardy, 1992; Vielkind et aI, 1995). Therefore, spontaneous 
changes in follicle innervation can be correlated here with defined 
stages in the epithelial morphogenesis and remodeling of the HF. 
Furthermore, an ever-increasing number of mouse mutants with 
functional deletion or overexpression of a gene coding for NTs, 
NP, or their receptors (Bothwell, 1995; Lewin and Barde, 1996), or 
for proteins relevant to nerve fiber structure, function, and sprout
ing (cf. Smith, 1996; see this supplement) provides incisive research 
tools for dissecting the relative significance of defined neurobio
logic parameters in piloneural interactions. In particular, the 
C57BL/6 mouse model for hair research (Paus et aI, 1994a, 1994b, 
1994e) has recendy provided interesting new leads to the charac
teristics of piloneural interactions. 

The Architecture of Hair Follicle Innervation Shows Hair 
Cycle-Dependent Plasticity One basic, phenomenologic ap
proach to enter into a dissection of piloneural interactions is to 
carefully check whether the cyclic transformations of the HF 
correlate with any structural changes in HF innervation. It is not 
unreasonable to expect that the dramatic epithelial tissue remodel
ing seen during the hair cycle (Paus, 1996) is associated with a 
corresponding remodeling of tissue innervation. On the basis of 
histochemical studies, however, it is widely thought that the 
perifollicular neural plexus of mature HFs does not undergo any 
remodeling during the hair cycle. Instead, the follicle innervation 
network is believed to simply collapse during the catagen-telogen 
transformation and to get re-extended into its original arrangement 
by the new, growing anagen hair bulb (Winkelmann, 1960; 
Giacometti and Montagna, 1967; Winkelmann, 1988). 

Studying the depilation-induced murine hair cycle and employ
ing sensitive irumunohistologic techniques for nerve fiber demar
cation (PGP 9.5, neurofilament 150 expression), we could recendy 
show that this dogma, at least in mice, is misleading (Botchkarev et 
aI, 1997a). The architecture of HF innervation in adolescent mice 
shows striking hair cycle-dependent plasticity, mainly in one se
lected region [i.e., the circular nerve fibers around the HF isthmus, 
the so-called "follicular network B .. (FNB»). Substantial innerva
tion changes occur even in interfollicular murine skin during the 
hair cycle: the circular, but not the longitudinal, fibers in "follicular 
network B" as well as irregularly arranged fibers in "follicular 
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Figure 3. The HF as a source and target of neurotrophins. (A) 
NGF+ cells in a murine telogen HF. (immunofluorescence; * indicates 
autofluorescence of hair shaft; -t> indicates dermal papilla; -I> indicates 
distal border of hair germ cells). (B) TrkA + cells in the same HF section. 
Scale bar, 25 JLm. 

network A" significantly increase in number during the earliest 
stages of anagen development (anagen II) (Figs 1. 2). 

At the same time, the epidermis and interfollicular dermis of early 
anagen skin become "hyper-innervated," and the circular nerve 
fibers of FNB upregulate their expression of growth-associated 
protein-43 (GAP-43) and neural cell adhesion molecules as an 
indicator of active fiber remodeling and sprouting. The innervation 
density of FNB declines again during the later stages of anagen, 
whereas the three horizontally arranged nerve plexus of murine 
skin, which get increasingly separated from each other by the 
growing anagen hair bulb, appear to retain a fairly constant 
architecture throughout the cycle. A large epithelial follicle com
partment, the anagen hair bulb, however, which does not even 
exist during telogen, may receive new nerve fibers in 16% of 
anagen VI follicles (Fig 1) (Botchkarev et aI, 1997a). How may 
these nerve rearrangements be initiated and orchestrated, and are 
they functionally significant for the control of HF cycling? 

The Hair Follicle Is a Source and Target of Neurotrophins 
As a first step toward answering these questions, we have studied 
the skin expression of various NTs (NGF, NT-3, NT-4, BDNF) 
and their receptors (tyrosine kinase (Trk) A, TrkB, TrkC, 
p75NTR) during HF cycling and have just generated an immuno
histologic profile of NT and NT receptor expression during murine 
HF development and cycling.1•2 This reveals that defined HF 
compartments are not only a prominent source of NTs (Fig 3A), 
but that they also are likely NT targets because they show a distinct 
pattern of NT receptor expression (Figs 3B. 5). Correspondingly, 
we detected significant hair cycle-dependent changes in NGF gene 
and protein expression, studying NGF mRNA steady-state levels 
(reverse transcriptase-polymerase chain reaction) and NGF protein 
content (enzyme-linked immunosorbent assay, western blot) in 
full-thickness mouse skin homogenates.2 

This does not come as a surprise because mouse and human 
keratinocytes are known to express NGF and NT receptors (Both-

1 Botchkarev VA, Peters EMJ, Eichmiiller S, Botchkareva NV, Paus R: 
The hair follicle as a source and target of neurotrophic factors.] Invest 
DermatoI107:507, 1996 (abstr). 

2 Welker P, Peters EMJ, Botchkarev VA, Petho-Schrarnm A, Eichmiiller 
S, Paus R: Nerve growth factor and the murine hair cycle.] Invest Dermatol 
106:910, 1996 (abstr). 
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well, 1991; Vega et aI, 1994; Akiyama et aI, 1996; Bronzetti et ai, 
1996; Shibayama and Koizumi, 1996), and because there is selec
tive NT receptor expression on epithelial cells in related develop
mental systems, such as during tooth morphogenesis (Luukko et aI, 
1996). Nonetheless, it highlights the importance of systematic 
exploration of the role of NTs in the control of epithelial cell 
proliferation, differentiation, and apoptosis (cf. Paus et aI, 1994d, 
Zhai et aI, 1996; Pincelli and Yaar, 1997). 

Intraepidermal and intrafollicular overexpression of NGF or 
NT-3 under the K14 promoter induces substantial skin hyper
innervation and epidermal hyperplasia in transgenic mice (Albers et 
aI, 1994, 1996; cf. Davis et aI, 1993, 1994). Interestingly, in 
organ-cultured murine HFs growing in their intact skin environ
ment, keratinocyte proliferation in resting (telogen) follicles was 
stimulated by NGF, whereas that of maximally proliferating (i.e., 
anagen II) follicles was inhibited (paus et aI, 1994d). These opposite 
effects of NGF suggest that there are cell cycle- and/or differenti
ation-related changes in NGF receptor expression by murine 
keratinocytes. Reportedly, p75NTR is the first growth factor 
receptor expressed by those human embryonal skin fibroblasts that 
condense to form the later dermal papilla of the follicle (Holbrook 
and Minami, 1991). In mature murine anagen VI follicles, we have 
just detected TrkB and TrkC expression by dermal papilla cells1.3·4 
(cf. Fig 5). 

It is conceivable, therefore, that the HF itself directs the changes 
in follicular innervation that it may require for optimal follicle 
cycling and growth as well as for executing its tactile functions by 
generating and releasing selected NT. In addition, NT may mod
ulate functions of the follicle epithelium indirectly by altering, for 
example, the secretion of epithelial morphogens and growth factors 
by dermal papilla fibroblasts. Such NTs targeting the dermal papilla 
could arise not only from Schwann cells and nerves, but from the 
follicle epithelium itself (cf. Fig. 5). 

Most recently we have collected evidence suggesting that NT-3 
and BDNF are involved in the regulation of murine HF develop
ment and cycling.3.4 HF morphogenesis is accelerated in the skin of 
NT -3 overexpressing mice and retarded in NT -3 heterozygous 
knockout mice, respectively. Moreover, precocious catagen devel
opment and shortening of anagen occurs in NT -3 overexpressing 
mice, and the back skin follicles of BDNF knockout mice are still in 
their first catagen phase when those of wild-type mice have already 
entered the first telogen stage.3.4 

Peptidergic Signaling in Murine Skin Changes during the 
Hair Cycle Not only the physical structure of defined sectors of 
murine HF innervation changes during the hair cycle (Botchkarev 
et aI, 1997a), but also their expression of NPs and NTMs. 

For example, the substance P (SP) content of murine skin 
fluctuates significantly during the induced hair cycle, with maximal 
SP skin levels occurring in early anagen, and minimal ones in 
catagen skin (Paus et aI, 1994c). Most, if not all, intracutaneous SP 
is thought to be synthesized in dorsal root ganglia and then 
transported into sensory nerve fiber temtirtals (Maggi, 1995; Smith, 
1996). Therefore, these hair cycle-dependent fluctuations in skin SP 
may reflect some form of spinal-follicular communication that 
affects SP gene expression and/or SP synthesis in dorsal root 
neurons, and/or the transport of SP into the skin (Paus et aI, 1994c). 
Alternatively, hair cycle-dependent fluctuations in the skin activity 
of SP-degrading enzymes may explain this phenomenon. This is 
unlikely, however, because the activity of the key tachykinin
degrading enzyme, neutral endopeptidase (NEP), does not change 

3 Botchkarev VA, Albers KM, Lewin GR, Botchkareva NV, Eichmiiller 
S, Paus R. NT-3 in murine skin: developmentally regulated expression and 
preliminary indications for an involvement in the regulation of hair follicle 
morphogenesis and cycling. Arch Dennatol Res 289:15, 1997 (abstr). 

4 Botchkarev VA, Lewin GR, Albers KM, Botchkareva NV, Peters EMJ, 
Paus R. Neurotrophins and murine hair follicle morphogenesis: expression 
patrerns of NT-3, NT-4, BDNF, TrkB and TrkC and indications for a 
functional role in hair follicle development and regression.] Illvest Dernratol 
108:620, 1997 (abstr). 
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Figure 4. Prominent calcitonin gene-related peptide (CGRP)+ 
nerve fibers in FNB. The figure shows CGRP-immunoreactive, pepti
dergic, sensory nerve fibers around the level of the HF isthmus and bulge 
region of a C5 7BL/6 pelage hair follicle, where epithelial stem cells are 
located (Cotsarelis et aI, 1990) . Note that in C5 7BL/6 mice, practically no 
substance P+ fibers can be detected in the vicinity of the HF (in contrast to 
the abundance ofSP+ fibers in the FNB region of the human perifollicular 
neural network). Scale bar, 25 JLm. 

in a manner that would explain the above fluctuations in SP skin 
levels. Yet, even the activity of this membrane-bound NP-degra
dation system, which controls the functional effects of tachykinins 
(c£ Grady et ai, 1997), is regulated in a hair cycle-dependent 
manner: maximal NEP activity occurs in mid-anagen, and minimal 
activity occurs in early and late anagen skin (Paus et aI, 1994c). 

Recently, we noticed that the number of SP-immunoreactive 
nerve fibers in mouse skin also changes in a hair cycle-dependent 
manners (Botchkarev et aI 1997b). A maximum of SP+ fibers was 
observed in early anagen skin, and a minimum in telogen. In 
striking contrast to human perifollicular peptidergic nerves, how
ever, many of which are prominently SP+ (Bjorklund et aI, 1986; 
Hordinsky et aI,' 1995; Hordinsky and Ericson, 1996), extremely 
few SP+ nerve fibers were noted in close proximity to HFs in 
C57BL/6 mouse skin. Instead, most perifollicular peptidergic fibers 
were calcitonin gene-related peptide (CGRP)+ (Fig 4); a maxi
mum of CGRP+ fibers was observed in early anagen skin, and a 
minimum in telogen and catagen skin (Botchkarev et aI, 1997b). 
These results question whether SP is a major piloneural communi
cation signal in mice and raise the possibility that other NP detected 
in the pilosebaceous unit [e.g., ACTH (Slominski et aI, 1993), 
�-endorphin (Furkert et aI, 1997)] may functionally be more 
important under physiologic conditions. 

Some Neuropeptides and Neurotransmitters Modulate Hair 
Follicle Cycling in Vivo Selected skin NPs alter murine HF 
cycling in vivo. Subcutaneously implanted pellets releasing SP 
induce anagen (Paus et aI, 1994c), and even subnanomolar concen
trations of SP significantly stimulate HF keratinocyte proliferation 
in murine skin organ culture (Paus et aI, 1995). Most recently, we 
have found that intracutaneous SP or ACTH injections also induce 
localized HF regression (catagen). 6 

Intracutaneous ACTH injections into telogen back skin can 
induce anagen in mice (paus et aI, 1994e), as do intracutaneous 
injections of neurotoxic agents that deplete endogenous NP or 
NTMs stores in the skin (capsaicin, 6-hydroxy-dopamine, guaneth-

5 Eichmiiller S, Botchkarev VA, Johansson 0, Paus R. Hair cycle
dependent rearrangement of murine skin innervation. ] Invest Dermatol 
106:889, 1996 (abstr). 

6 Maurer M, Peters EM], Fischer E, Botchkarev VA, Eichmiiller S, Paus 
R. The role of neuropeptides in murine hair cycle modulation: induction of 
hair follicle regression by capsaicin and substance P. ] Invest Dennatol 
107:489, 1996 (abstr). 
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idinef (paus et aI, 1994c). Capsaicin injection also induces prema
ture catagen development in mice.6 Interestingly, capsaicin- or 
SP-induced catagen HF show signs of follicle dystrophy, accompa
nied by some degree of alopecia localized to the injection site.6 
Thus, massive exposure toward selected NPs (either by injecting 
them or by depleting endogenous NP stores) can be associated with 
follicle damage and hair loss. Could this be one of the pathomecha
nisms underlying the rare cases of alopecia that have credibly 
followed extreme psychoemotional stress? 

Autonomic-Nervous Controls of Hair Growth May Exist 
In order to address the role of autonomic-nervous signaling in hair 
growth control, we have studied tyrosine hydroxylase antigen as a 
marker for adrenergic nerves and choline acetyl transferase as an 
immunohistologic marker for cholinergic nerves and have visual
ized the noradrenaline content of nerve fibers by paraformaldehyde 
or glyoxylic acid condensation. Once again, substantial hair cycle
associated changes were noted: for example, the number of tyrosine 
hydroxylase-positive and noradrenaline-containing nerve fibers as 
well as that of choline acetyl transferase-positive fibers significantly 
increases in anagen compared to telogen skin; noradrenaline
positive and tyrosine hydroxylase-positive nerve fibers then decline 
again toward catagen.7 That the noradrenaline-depleting agents 
6-hydroxy-dopamine and guanethidine induce anagen7 supports 
the concept that autonomic-nervous signals can modulate hair 
growth, in principle (compare also Asada-Kubota, 1995). This is 
supported by the clinical observation that f3-blockers and amphet
amines, for example, can cause a telogen effluvium. 

Mast Cell-Nerve Interactions May Be Involved in the Con
trol of HF Cycling and/or Innervation Substantial evidence 
now suggests that mast cells (MCs) have hair growth-modulatory 
properties (Botchkarev et aI, 1995; Maurer et aI, 1995), namely that 
they are important for both anagen (Paus et aI, 1994e) and catagen 
development in mice.8 Skin MCs frequently are found in close 
proximity to cutaneous nerve fibers (e.g., Naukkarinen et aI, 1993), 
possibly in order to facilitate bidirectional MC-nerve interactions. 
For example, skin NPs like SP induce cytokine release (Ansel et aI, 
1993) and MC degranulation in mice (paus et aI, 1995), whereas 
MCs can secrete NGF, induce the axon reflex, and produce 
NP-degrading proteases (Kiernan et aI, 1972; Caughey et aI, 1988; 
Foreman, 1988; Leon et aI1994). Therefore, it is interesting to note 
that MC-nerve contacts change during the murine hair cycle and 
appear to be nonrandom. 

In telogen and early anagen skin, MCs preferentially contact 
CGRP+ or SP- and CGRP-double+ sensory nerve fibers; and 
during late anagen, there is a significant increase in the number of 
close contacts between MCs and andrenergic (tyrosine hydroxy
lase-positive) fibers (compared to telogen values), whereas contacts 
between MC and peptide histidine-methionine-positive or choline 
acetyl transferase-positive nerve fibers peak during catagen (Botch
karev et aI, 1997b). In view of the hair growth-modulatory 
properties of MC, on the one hand (Maurer et aI, 1995), and the 
indications supporting neural mechanisms of hair growth control, 
on the other (Table II), it is tempting to speculate that MC-nerve 
interactions are functionally relevant to the control of HF cycling 
and/or innervation. 

PILONEURAL INTERACTIONS: 
PRINCIPLES AND PERSPECTIVES 

Several levels of communication between cutaneous nerve endings 
and their target cells in the HF can be envisioned (Fig S). 

Most importantly, direct "trophic" effects of skin nerves on the 

7 Peters EM], Maurer M, Botchkarev VA, Eichmiiller S, Paus R. Auto
nomic innervation of murine skin: hair cycle-dependent remodelling and 
hair growth induction by drugs modulating adrenergic function. ] Invest 
DermatoI107:488, 1996 (abstr). 

8 Maurer M, Eichmiiller S, Botchkarev VA, Peters EM], Paus R: Mod
ulation of murine hair follicle regression by neonatal capsaicin treatment. 

] Invest DermatoI106:889, 1996 (abstr). 
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Figure S. Hypothetical. direct and indirect piloneural interactions 
in murine skin. See text for explanation. 

HF need to be distinguished from indirect ones (Table I), such as 
changes in the local blood supply caused by nerve damage or by 
hyper-innervation. In vivo, it is quite difficult, however, to differ
entiate between follicle atrophy due to inadequate skin perfusion as 
a consequence of disturbed vasomotoric control by damaged 
peripheral nerves and a lack of direct, trophic growth stimuli 
secreted by these nerves. NPs, such as CGRP and SP, released from 
afferent nerves in the skin are potent vasodilatory agents and/or 
induce plasma extravasation and leukocyte migration into the skin 
(Maggi et ai, 1987; Matis et ai, 1990; Xu et ai, 1992; Maggi, 1995; 
Morris, 1995; Crawley and McLean, 1996; Baraniuk, 1997). Also, 
adrenergic transmitters, such as noradrenaline released from sym
pathetic nerve fibers in the skin, cause strong vasoconstriction 
(White and Udwadia, 1975; Raff and Neumann, 1985; Burnstock 
and Ralevic, 1994; Smith, 1996), and sensory and autonomic nerve 
fibers in the skin can differentially release a multitude of vasoactive 
peptides (Leeman et ai, 1991; Lotti et ai, 1995; Morris, 1995; Ansel 
et ai, 1997; Wallengren, 1997). 

Thus, the most profound "trophic" effects of cutaneous nerve 
fibers on HF growth may well be exerted via regulating the supply 
of nutrients and oxygen to the HF - an organ that, due to its very 
high metabolic demands and proliferative activity during anagen, is 
probably very sensitive to perfusion changes. Yet, a host of other 
indirect effects of neural signals on HF keratinocyte proliferation, 
differentiation, and apoptosis must be considered (Table I. Fig 5). 
NP, NTM, and NT alter multiple functions of hematopoietic cells 
relevant to HF biology such as MCs, macrophages, Langerhans 
cells, and T cells (cf. Leeman et ai, 1991; Crawley and McLean, 
1996; Baraniuk, 1997; see Ansel et ai, 1997; Torii et ai, 1997). In 
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particular, the modulation of MC and macrophage activities by NPs 
such as SP and CGRP deserves special attention because both cell 
populations have been implicated in hair growth control (Maurer et 
ai, 1995; Paus, 1996, 1997). 

Furthermore, NPs, NTMs, and NTs released from peri- or 
intrafollicular nerve fibers or their glia might alter fibroblast 
functions in the dermal papilla, the mesenchymal "control center" 
of the HF (Hardy, 1992; Paus, 1996) [note that the first evidence 
that NPs have growth factor properties arose from studies on 
fibroblast populations (cf. Nilsson et ai, 1985; Rozengurt, 1991)]. 
With the exception of vibrissae follicles, however, the proximal HF 
in mice is only weakly innervated, if at all (Botchkarev et ai, 1997a) 
(cf. Fig. 1). Therefore, at least in murine pelage follicles, indirect 
NP and NT effects on hair bulb keratinocytes (i.e., release from 
perifollicular nerves, and modulation of dermal papilla fibroblast 
functions) are probably not a major factor in piloneural interactions 
(Fig 5). 

Rather, NPs, NTM, and NTs may direcdy stimulate appropriate 
receptors on HF keratinocytes, because keratinocytes, which ex
press high-affinity receptors for all these classes of neural signaling 
molecules (Grando et ai, 1993; Schallreuter et al 1993, 1995; 
Grando, 1997; Pincelli and Yaar, 1997; Ansel et ai, 1997). Here, 
one needs to consider that skin nerve fibers may not only secrete 
NP and NTM, but may also release NTs such as NGF and NT-3 
previously taken up via NT receptors (Lewin and Barde, 1996; 
Bothwell, 1997). In addition, the Schwann cells, ensheathing 
perifollicular nerve fibers, are a rich source of secreted growth 
factors, including NTs (Lewin and Barde, 1996; Smith, 1996). 
Finally, enzymes that rapidly degrade secreted NPs such as neutral 
endopeptidase may be secreted by or expressed on the cell surface 
of HF keratinocytes, thereby controlling the level of follicle 
keratinocyte stimulation by NPs secreted by perifollicular nerve 
fibers. 

It remains to be seen whether neural mechanisms of hair growth 
control exist. The bulk of the currently available evidence are 
affirmative. How relevant are they clinically? This is still too early 
to say and definitely will be much more difficult to probe in patients 
than in mice. At least, specific signaling pathways of piloneural 
communication can now be defined (Fig 5). Specifically, it appears 
promising to screen human scalp skin specimens from patients with 
telogen e1Huvium or alopecia areata for abnormalities in the 
parameters of piloneural signaling listed in Fig 5, compared to 
normal controls. Initial reports on lesional alopecia areata follicles 
(Hordinsky et ai, 1995; Hordinsky and Ericson, 1996), which have 
uncovered abnormalities in the peptidergic innervation of these 
follicles, invite one to extend such analyses to other forms of hair 
loss reputed to be associated with psycho emotional stressors or 
neurologic abnormalities. 

If skin nerves really exert "trophic" roles, one would expect a 
certain level of continuous NP-, NT- and/or NTM-secretion in 
order to sustain epithelial homeostasis. Yet, this putative baseline 
secretion in vivo, not to mention the underlying enzymatic, tran
scriptional, and secretory controls, is virtually unknown. These 
need to be characterized in normal skin as well as in inflammatory, 
hyper-proliferative, and atrophic skin diseases, where baseline 
secretion may be abnormal. The baseline NP, NT, and NTM 
levels, and the skin expression of corresponding receptors, certainly 
are interesting targets for pharmacologic manipulation. 

In addition, locally administered NPs, namely those with a very 
short half-life and a correspondingly low risk of systemic side 
effects, are attractive candidate "hair drugs," the more so if effective 
doses can be delivered by "follicle-targeted" liposome preparations 
(e.g., Li et ai, 1992a; Lieb et ai, 1992; Lauer et ai, 1996). Specifically, 
our data from the C5 7BL/ 6 mouse model encourage one to explore 
selected NP as anagen-inducing agents, which may be of use for 
treating telogen e1Huvium and androgenetic alopecia. In contrast, 
very high doses of some NPs may be employed to induce the 
shedding of unwanted hair, e.g., in hypertrichosis or hirsutism (cf. 
Paus, 1996). 
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