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Ectodysplasin receptor Edar and its ligand Eda A1, as well as their related receptor Xedar and ligand Eda A2, are

recently discovered members of the tumor necrosis factor superfamily that signal predominantly through the

nuclear factor-jB and c-jun N-terminal kinases pathways. Mutations in genes that encode proteins involved in Edar

signaling pathway cause hypohidrotic ectodermal displasias in humans and mice and characterized by severe

defects in development of ectodermal appendages including hairs, teeth, and exocrine glands. Here, we summarize

the current knowledge of molecular mechanisms underlying the involvement of Edar signaling pathway in con-

trolling hair follicle (HF) development and cycling. Genetic and experimental studies suggest that Edar signaling is

involved in the control of cell fate decision in embryonic epidermis, as well as in the regulation of cell differentiation

programs in the HF. Loss or gain of Edar signaling affects the initiation of several HF types (guard and zig-zag HF),

hair shaft formation, as well as sebaceous gland morphology. We also review data on the cross-talk between Edar

and Wnt, transforming growth factor-b/bone morphogenic protein/activin, and Shh signaling pathways in the con-

trol of HF development and cycling.
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Hair follicle (HF) is an ectodermal appendage that shows
in postnatal life a dynamic cycling activity with periods of
active growth and hair fiber formation (anagen), apoptosis-
driven involution (catagen), relative resting, and hair shed-
ding (telogen–exogen) (Paus and Cotsarelis, 1999; Fuchs
et al, 2001; Stenn and Paus, 2001; Millar, 2002; Botchkarev
and Paus, 2003). HF morphogenesis and cycling are con-
trolled by similar signaling networks within and between the
follicular epithelium and mesenchyme employing molecules
that belong to the Wnt, transforming growth factor-b (TGF-b)/
bone morphogenic proteins (BMP), Hedgehog, fibroblast
growth factor, Notch, epidermal growth factor, tumor ne-
crosis factor, and neurotrophin families (Cotsarelis and Mill-
ar, 2001; Fuchs et al, 2001; Millar, 2002; Botchkarev and
Kishimoto, 2003; Schmidt-Ullrich and Paus, 2005).

Ectodysplasin receptor Edar is a recently discovered
member of the tumor necrosis factor (TNF) receptor super-
family that signals predominantly through nuclear factor-kB
(NF-kB) transcription factors (Mikkola and Thesleff, 2003).
Defects in genes that encode proteins of the Edar signaling
pathway cause hypohidrotic ectodermal dysplasias (HED) in
humans and similar conditions in mice (Drogemuller et al,
2003). HED is characterized by severe defects in ectoder-
mal appendage development, including hairs, teeth, and
exocrine glands. The rapidly accumulating information
proves a critical role for Edar signaling in molecular signa-
ling network that regulate the development of ectodermal
appendages (reviewed by Mikkola and Thesleff, 2003). Here

we summarize current knowledge about the role of Edar
signaling in HF development and growth. We also focus on
interplay between Edar signaling pathway and other key
molecular pathways that are involved in the control of HF
development and cycling.

Molecular Components of the Edar
Signaling Pathway

The Ectodysplasin family of ligands includes two trimeric
type II membrane proteins (Eda A1 and Eda A2; Fig 1) both
containing a short intracellular domain, transmembrane re-
gion, and extracellular portion with collagenous domain and
a TNF-ligand motif in the C-terminal region (reviewed by
Mikkola and Thesleff, 2003). Eda A1 differs from the Eda A2
by presence of only two additional amino acids in the TNF
motif (Yan et al, 2000; Hymowitz et al, 2003). Despite these
minor structural differences, Eda A1 and Eda A2 show very
high specificity to the corresponding receptors Edar and
Xedar (Bayes et al, 1998; Yan et al, 2000; Hymowitz et al,
2003). Cleavage of Eda A1/2 by the furin-like enzyme leads
to formation of soluble extracellular molecule which is able
to interact with corresponding receptors and mediate the
signals (Chen et al, 2001; Elomaa et al, 2001).

Similar to the most TNF receptors, Edar contains extra-
cellular ligand binding N-terminal domain, single transmem-
brane region and intracellular region containing death
domain (Headon and Overbeek, 1999). Eda A1 binding to
Edar leads to recruitment of auxiliary death domain con-
taining protein Edaradd, which binds selected TRAF pro-
teins (TRAF1–3 and possibly 5 and 6, but not TRAF4,

Abbreviations: BMP, bone morphogenic proteins; HF, hair follicle;
JNK, c-jun N-terminal kinases; NF-kB, nuclear factor-kB; TNF,
tumor necrosis factor
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Headon et al, 2001; Yan et al, 2002; Fig 1). Edar signal leads
to activation of NF-kB transcripton factors, their transloca-
tion to nucleus and modulation of the activity of the corre-
sponding target genes (Smahi et al, 2002). Although some
TNF family receptors activate c-jun N-terminal kinases
(JNK) pathway in addition to NF-kB pathway, Edar showed
only weak activation of JNK pathway (Kumar et al, 2001;
Mikkola and Thesleff, 2003).

In contrast to Eda A1/Edar signaling, Eda A2 binding to
Xedar leads to interaction of its intracellular domain with
TRAF3 and TRAF6 and activation of both NF-kB and JNK
pathways (Sinha et al, 2002; Fig 1). Eda A1 and Eda A2 do
not interact with recently discovered TNF family receptor
TROY that shows high structural similarity to Edar (Kojima
et al, 2000). TROY signaling involves recruitment of the
TRAF2, TRAF5, TRAF6 and possibly TRAF1 and TRAF3 and
leads to strong JNK and weak NF-kB activation (Kojima
et al, 2000; Kumar et al, 2001; Fig 1).

Deficiency in Edar Signaling Affects HF
Morphogenesis

In normal mouse fur, HF morphogenesis results in the for-
mation of four hair types (Sundberg and Hogan, 1994; Viel-
kind and Hardy, 1996): (1) Guard (tylotrich) hairs are thick,
straight and represent about 5%–10% of the hairs in mouse
fur; (2) Awl hairs are also straight and thick but significantly
shorter than guard hairs; (3) Auchene hairs are similar to the

awl hairs in length except that they have a single contrac-
tion; (4) Zig-zag hairs comprise about 70% of the normal
hairs in mouse fur and show two contractions. Guard or
primary HF are induced between E14.5 and E16.5, whereas
non-tylotrich or secondary HF producing the awl, auchene
and zig-zag hairs are induced in murine back skin from
E16.5 to P0.5 (Sundberg and Hogan, 1994; Vielkind and
Hardy, 1996). Microscopically, guard HF may be distin-
guished from the other HF types by the enlarged size of
proximal hair bulb and two-lobular sebaceous glands.

The crucial role of the components of Edar signaling
pathway (Eda A1, Edar, Edaradd) in HF development is ev-
ident from the fact that mice with spontaneous mutations in
the corresponding genes (Tabby [Ta], Downless [Dl], and
Crinkled [Cr]) show lack of guard and zig-zag hairs (Fergu-
son et al, 1997; Headon and Overbeek, 1999; Headon et al,
2001). Coat of these mice consists of two intermediate
types of hairs which resemble the awl and auchene hairs in
length but lack of normal arrangements of pigment granules
in hair medulla; (Kindred, 1967; Sundberg, 1994; Table I).
Also, these mice show absence of hairs behind the ears and
on the tail, as well as lack of the sweat and Meibomian
glands (Gruneberg, 1971a, b). In contrast to Edar deficiency,
genetic Xedar ablation is not accompanied by any visible
skin or HF abnormalities (Newton et al, 2004).

TRAF6 and NF-kB serve as important downstream com-
ponents of Edar signaling (reviewed in Mikkola and Thesleff,
2003; Fig 1). The genetic ablation of TRAF6 in mice also
results in hair defects similar to Tabby, however, TRAF6 null

Figure 1
Molecular components of
the Edar, Xedar, and Troy
signaling pathways. Scheme
illustrating the molecular com-
position (ligands, receptors
intracellular adaptor proteins,
downstream effectors) of the
Edar, Xedar, and Troy signa-
ling pathways.
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mice also show hypoplastic sebaceous glands (Naito et al,
2002). Prevention of NF-kB activation by transgenic
expression in skin of its repressor IkBa also leads to hair
defects similar to that of seen in Ta, Dl, and Cr mice
(Schmidt-Ullrich et al, 2001). These observations suggest
critical roles for TRAF6 and NF-kB in Edar signaling and
their possible involvement in regulating the expression of
Edar targets in the HF keratinocytes.

Discovery of the molecular basis of the Ta, Dl, and Cr
mutations led to detailed morphological characterization of
the Eda A1, Edar, and Edaradd expression during HF
morphogenesis. At E14.5–E15.5, Eda mRNA is expressed in
the interfollicular epidermis, Edar, and Edaradd transcripts
are seen in the hair placodes, whereas Eda A1 and Edar
proteins are seen in both hair placodes and interfollicular
epidermis (Yan et al, 2000; Laurikkala et al, 2002; Mikkola
and Thesleff, 2003). During later steps of HF development,
Eda and Edar transcripts are expressed in hair bulb kera-
tinocytes, whereas Eda A1 and Edar proteins are seen in
differentiating cells of the hair matrix (Yan et al, 2000; Mik-
kola and Thesleff, 2003). In contrast to Eda A1, Eda A2
protein is not expressed in the epidermis and hair placodes
at E14.5–E18.5 and is seen in the hair bulb epithelium only
at P1.5, whereas Xedar protein is expressed in differenti-
ating hair matrix keratinocytes starting from E17.5 (Yan et al,
2000). At E14.5, Xedar and TROY transcripts are seen in the
interfollicular epidermis and hair placodes, whereas later
their expression becomes more localized in hair bulb ker-
atinocytes (Kojima et al, 2000; Yan et al, 2000).

Thus, these expression patterns together with HF phe-
notypes seen in Ta, Dl, and Cr mice suggest an important
role for Edar signaling in the HF initiation and in hair shaft
formation. Also, strictly epithelial expression of the compo-
nents of Edar pathway suggest their role in the intra-
epithelial signaling exchange between keratinocytes of
developing HF, as well in modulating the responsiveness
of HF epithelium to mesenchymal signals.

Gain of the Edar Function Leads to Partial
Restoration of the Tabby Phenotype and
Alters Cell Fate Decision in the Epidermis

Recent pharmacological and genetic studies confirmed
distinct roles for Edar and Xedar signaling in the control of
HF development. In particular, it was shown that pharma-
cological administration of soluble Eda A1-Fc chimeric pro-
tein to pregnant Tabby mice between E11.5 and E15.5 lead
to appearance of the guard HF, tail hairs, and exocrine
glands (Gaide and Schneider, 2003). But treatment with Eda
A2-Fc does not rescue the Tabby phenotype. Interestingly,
HF morphogenesis in the tail of Tabby mice could be in-
duced even when Eda A1-Fc treatment starts within few
days after birth. But Eda A1-Fc treatment is not resulted in
the appearance of zig-zag hairs (Gaide and Schneider,
2003). This work shows the importance of proper intensity
and timing of Edar signaling during skin morphogenesis and
suggests that genetic defects in Edar signaling may be ef-

Table I. Hair phenotype of mice with genetic loss or gain of Edar and Xedar signaling

Gene Hair phenotype when gene is mutated or deleted Hair phenotype when gene is overexpressed References

Eda
(Tabby)

Guard and zig-zag hairs are missing. Awl hairs are
present, whereas auchene hairs are either absent
(majority of the animals) or reduced in number. Total
number of pelage hairs is normal. Absence of hairs
behind the ears and on the tail

Kindred (1967)
Gruneberg (1971a)
Sundberg (1994)
Ferguson et al (1997)
Drogemuller et al (2003)

Eda A1 CMV-Eda A1 mice on Tabby background: Guard and
tail hairs are present, but zigzags are missing.
Hyperplasia of sebaceous glands

Srivastava et al
(2001)Cui et al (2003)
Mustonen et al (2003)
Zhang et al (2003)

K14-Eda A1 mice on FVB/N background: Curly or
straight hairs that resemble guard and awl hairs of
WT mice. Zigzag and auchene hairs are missing.
Formation of ‘‘fused’’ follicles during
morphogenesis. Retardation of catagen

Inv-Eda A1 mice on C57BL/6 background: Guard,
awl and auchene hairs are normal, zig-zag hairs are
missing. Formation of curly hairs instead of zig-zag
hairs. Some follicles are fused

Eda A2 Apparently normal hair development Cui et al (2003)
Mustonen et al (2003)

Edar

(Downless)

Phenotype identical to Tabby and Crinkled Not determined Headon and Overbeek

(1999)

Edaradd

(Crinkled)

Phenotype identical to Tabby and Downless Not determined Headon et al (2001)

Yan et al (2002)

Xedar Apparently normal hair development Not determined Newton et al (2004)

TRAF6 Guard and zig-zag hairs are missing, awl hairs are
abnormal. Sebaceous glands are hypoplastic

Not determined
Naito et al (2002)
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fectively corrected by administration of the ligand at ap-
propriate time window during embryogenesis.

Genetic studies also suggest a possibility for partial res-
cuing the Tabby phenotype by transgenic expression of Eda
A1 under control of the CMV promoter (Srivastava et al,
2001). Eda A1 overexpression leads to restoration of the
guard HF, tail hairs, and sweat glands in Tabby mice (Sri-
vastava et al, 2001; Cui et al, 2003). In contrast to Eda A1
transgenic mice, Eda A2 overexpression is not capable of
rescuing Tabby phenotype (Cui et al, 2003). Interestingly,
transgenic increase of Eda A1 expression also results in
hyperplasia of the sebaceous glands suggesting the role for
Edar signaling in regulation of the sebocyte activity (Cui
et al, 2003). But Eda A1 overexpression is not able to re-
store zig-zag hairs in Tabby mice and even result in sup-
pression of their formation in wild-type mice suggesting the
importance of proper intensity of Edar signaling for the for-
mation of zig-zag hairs.

Further insights into the role of Edar signaling in the
control of hair shaft formation were obtained by generating
transgenic mice overexpressing Eda A1 under control of the
K14 or involucrin promoters that target transgene expres-
sion either to basal epidermal and outer root sheath kera-
tinocytes or to differentiating keratinocytes of the epidermis
and HF inner root sheath, respectively (Mustonen et al,
2003; Zhang et al, 2003). Both K14-EdaA1 and Inv-EdaA1
mice show quite similar hair phenotypes. Some of the K14-
Eda A1 mice show formation of only curly hairs, whereas the
others have only straight hairs that resemble guard and awl
hairs seen in wild-type mice (Mustonen et al, 2003). In Inv-
Eda A1 transgenic mice, guard, awl and auchene hairs look
normal, whereas zig-zag hairs are replaced by curly hairs
that show single column of air cells in the medulla (Zhang
et al, 2003).

Gain of the Eda A1 levels in the epidermis of K14-EdaA1
and Inv-EdaA1 transgenic mice also results in alterations of
the HF patterning and formation of the ‘‘fused’’ HF because
of the loss of proper spacing between neighboring hair pla-
codes (Mustonen et al, 2003, 2004; Zhang et al, 2003).
‘‘Fused’’ HF were joined together in their permanent por-
tions by the outer epithelial layers, and within a fusion, each
HF possessed its own hair bulb, dermal papilla, hair shaft,
and sebaceous gland (Mustonen et al, 2003, 2004; Zhang
et al, 2003). Interestingly, the ‘‘fused’’ HF show unchanged
patterns of cyclic activity and proceed through all hair cycle
stages together with other HF that show normal morphol-
ogy (Zhang et al, 2003).

Taken together, these data suggests that Edar signaling
is involved in the control of cell fate decision in embryonic
epidermis, as well as in the regulation of cell differentiation
programs in the HF. The effects of Edar signaling on HF
development show stringent spatio-temporal dependence,
and are also strikingly dependent on the amount of bio-
logically active ligand in close vicinity of target cells. But
additional efforts are required to fully understand the differ-
ences in molecular mechanisms of Edar involvement and
Edar targets in controlling two distinct steps of HF morpho-
genesis (HF initiation vs hair shaft formation). Also, cross-
talk between Edar signaling and other molecular pathways
involved in the formation of distinct hair types remain to be
further clarified.

Cross-Talk Between Edar and Other
Signaling Pathways that Control HF

Development

Several lines of evidence suggest the involvement of Wnt
and TGF-b/activin/BMP signaling pathways in controlling
the expression of Eda and Edar: in embryonic explants of
murine skin Eda is induced by Wnt6, whereas Edar expres-
sion was induced by activin (Laurikkala et al, 2002). Inter-
estingly, Edar induction by activin requires presence of
mesenchyme, whereas Eda induction seems to be mesen-
chyme independent (Laurikkala et al, 2002). Importance of
Wnt signaling in regulation of the Eda expression was con-
firmed by analysis of Lef-1 knockout embryos (Laurikkala
et al, 2002) and by transient transfection experiments with
Eda promoter in vitro (Durmowicz et al, 2002). In chicken
skin, Edar is positively regulated by b-catenin, whereas
BMP signaling inhibits Edar expression (Houghton et al,
2005).

The molecular analysis of embryonic HF in Tabby mice
shows that at E14.5 (i.e., when the placodes of guard
HF become visible in wild-type mice) the expression of pla-
code markers, such as b-catenin, Lef-1, Shh, Ptch, BMP-4,
and activin A is absent in Tabby skin (Laurikkala et al,
2002). As Edar expression is seen in hair placodes of b-
catenin conditional knockout mice (Huelsken et al, 2001),
these data suggest Edar signaling as up-stream regulator of
the Wnt, Shh, and BMP pathways during the initiation of
guard HF.

But the mechanism underlying the interaction between
Edar and Wnt/Shh/BMP signaling pathways during induc-
tion of other HF types remains to be further clarified. Ini-
tiation of the awl, auchene, and zig-zag HF is absent in
noggin knockout mice (Botchkarev et al, 1999, 2002),
whereas Shh overexpressing mice (promoter—human ker-
atin 1) show lack of guard, awl, and auchene HF (Ellis et al,
2003). Also, BMP4 administration into postnatal telogen
skin selectively blocks telogen–anagen transition in non-
guard HF, whereas guard HF show normal anagen devel-
opment (Botchkarev et al, 2001). It appears to be very in-
triguing to define whether Edar signaling is involved in the
controlling the expression of the components of BMP and
Shh pathways during initiation of zig-zag HF as well as
during cell differentiation phase of the HF morphogenesis
and cycling.

Conclusion

During the last decade, a substantial progress has been
achieved in delineating the molecular structure and function
of Edar signaling pathway, which is now recognized as
powerful regulator of skin development and postnatal
remodeling. Edar signaling is intimately involved in the con-
trol of cell fate decision and cell differentiation during HF
development. But additional efforts are required to fully un-
derstand molecular mechanisms and cross-talk between
Edar and other signaling pathways that control skin and HF
development and growth. The progress in this area of re-
search would hopefully bridge the gap between our current
knowledge of Edar functions in skin and potential clinical
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application of the components of Edar signaling pathway for
correction of skin and hair growth disorders.
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