72 research outputs found

    The women's cause: feminist campaigns 1918-1928.

    Get PDF
    This thesis shows that the first wave Women's Movement\ud continued the struggle for the franchise during the Great War and\ud throughout the 1920s until its success in 1928. It also details the\ud campaigns for the social and economic emancipation of women in the\ud period from 1918 to 1928. It provides a first step in recovering\ud this history of political activity carried out through a network of\ud women's organizations which expanded to embrace all aspects of\ud women's lives.\ud Chapter 1 acts an introduction and clarifies some\ud questions of treatment and perspective. Chapter 2 describes the\ud Movement's membership and details the suffragists' activities\ud throughout the War and their contribution to the success of the\ud franchise in 1918.\ud In Chapter 3, the consequences for the women's\ud organizations of re-ordering agendas and constitutions because of\ud the vote, is followed in the next three chapters by a detailed\ud examination of the post-War period of reconstruction. This includes\ud the progress of women's political participation, the scale of the\ud reforms it pursued and the economic problems of demobilisation and\ud political opposition.\ud The documentation‱of the growth of political confidence\ud and skill in the three General Elections from 1922 to 1924 in Chapter 7, also serves to illustrate the diversity of approach\ud enshrined in the non-party and party organizations. The reappraisal\ud of feminist ideology is set within the context of the development\ud of the equalitarian and welfare theories in Chapter 8.\ud Chapter 9 deals with the campaign which united the\ud Movement in a concerted effort to win the vote for all women. The\ud thesis concludes in Chapter 10, with a brief description of the\ud Movement's response to its franchise success and its remit for\ud future activity in

    The Molecular Mechanism of B Cell Activation by toll-like Receptor Protein RP-105

    Get PDF
    The B cell–specific transmembrane protein RP-105 belongs to the family of Drosophila toll-like proteins which are likely to trigger innate immune responses in mice and man. Here we demonstrate that the Src-family protein tyrosine kinase Lyn, protein kinase C ÎČ I/II (PKCÎČI/II), and Erk2-specific mitogen-activated protein (MAP) kinase kinase (MEK) are essential and probably functionally connected elements of the RP-105–mediated signaling cascade in B cells. We also find that negative regulation of RP-105–mediated activation of MAP kinases by membrane immunoglobulin may account for the phenomenon of antigen receptor–mediated arrest of RP-105–mediated B cell proliferation

    The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43

    Get PDF
    We present observations of polarized dust emission at 850 ÎŒm from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense (NH 10 22 2 ~ –1023 cm−2) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to ∌160 ± 30 ÎŒG in the main starless core and up to ∌90 ± 40 ÎŒG in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-AlfvĂ©nic. We also present a new method of data reduction for these denser but fainter objects like starless cores

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry

    Get PDF
    Abstract: We have obtained sensitive dust continuum polarization observations at 850 ÎŒm in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope as part of the B-fields in STar-forming Region Observations (BISTRO) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution (∌2000 au or ∌0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis–Chandrasekhar–Fermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 38 ± 14, 44 ± 16, and 12 ± 5 ÎŒG, respectively. These cores show distinct mean B-field orientations. The B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. The B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field and not well correlated with other axes. In contrast, Miz-8b exhibits a disordered B-field that shows no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux

    The JCMT BISTRO Survey: An 850/450 ÎŒm Polarization Study of NGC 2071IR in Orion B

    Get PDF
    We present the results of simultaneous 450 ÎŒm and 850 ÎŒm polarization observations toward the massive star-forming region NGC 2071IR, a target of the BISTRO (B-fields in STar-forming Region Observations) Survey, using the POL-2 polarimeter and SCUBA-2 camera mounted on the James Clerk Maxwell Telescope. We find a pinched magnetic field morphology in the central dense core region, which could be due to a rotating toroidal disklike structure and a bipolar outflow originating from the central young stellar object IRS 3. Using the modified Davis–Chandrasekhar–Fermi method, we obtain a plane-of-sky magnetic field strength of 563 ± 421 ÎŒG in the central ∌0.12 pc region from 850 ÎŒm polarization data. The corresponding magnetic energy density of 2.04 × 10−8 erg cm−3 is comparable to the turbulent and gravitational energy densities in the region. We find that the magnetic field direction is very well aligned with the whole of the IRS 3 bipolar outflow structure. We find that the median value of polarization fractions is 3.0% at 450 ÎŒm in the central 3' region, which is larger than the median value of 1.2% at 850 ÎŒm. The trend could be due to the better alignment of warmer dust in the strong radiation environment. We also find that polarization fractions decrease with intensity at both wavelengths, with slopes, determined by fitting a Rician noise model of 0.59 ± 0.03 at 450 ÎŒm and 0.36 ± 0.04 at 850 ÎŒm, respectively. We think that the shallow slope at 850 ÎŒm is due to grain alignment at the center being assisted by strong radiation from the central young stellar objects

    Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-mass Star-forming Region NGC 2264: Global Properties and Local Magnetogravitational Configurations

    Get PDF
    We report 850 Όm continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations large program on the James Clerk Maxwell Telescope. These data reveal a well-structured nonuniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30° from north to east. Field strength estimates and a virial analysis of the major clumps indicate that NGC 2264C is globally dominated by gravity, while in 2264D, magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and longitudinal collapsing, driven by the region's global gravity

    The JCMT BISTRO Survey: An 850/450 Ό m Polarization Study of NGC 2071IR in Orion B

    Get PDF
    Abstract: We present the results of simultaneous 450 ÎŒm and 850 ÎŒm polarization observations toward the massive star-forming region NGC 2071IR, a target of the BISTRO (B-fields in STar-forming Region Observations) Survey, using the POL-2 polarimeter and SCUBA-2 camera mounted on the James Clerk Maxwell Telescope. We find a pinched magnetic field morphology in the central dense core region, which could be due to a rotating toroidal disklike structure and a bipolar outflow originating from the central young stellar object IRS 3. Using the modified Davis–Chandrasekhar–Fermi method, we obtain a plane-of-sky magnetic field strength of 563 ± 421 ÎŒG in the central ∌0.12 pc region from 850 ÎŒm polarization data. The corresponding magnetic energy density of 2.04 × 10−8 erg cm−3 is comparable to the turbulent and gravitational energy densities in the region. We find that the magnetic field direction is very well aligned with the whole of the IRS 3 bipolar outflow structure. We find that the median value of polarization fractions is 3.0% at 450 ÎŒm in the central 3â€Č region, which is larger than the median value of 1.2% at 850 ÎŒm. The trend could be due to the better alignment of warmer dust in the strong radiation environment. We also find that polarization fractions decrease with intensity at both wavelengths, with slopes, determined by fitting a Rician noise model of 0.59 ± 0.03 at 450 ÎŒm and 0.36 ± 0.04 at 850 ÎŒm, respectively. We think that the shallow slope at 850 ÎŒm is due to grain alignment at the center being assisted by strong radiation from the central young stellar objects
    • 

    corecore