13 research outputs found

    The Gaia-ESO survey: mapping the shape and evolution of the radial abundance gradients with open clusters

    Get PDF
    The spatial distribution of elemental abundances and their time evolution are among the major constraints to disentangle the scenarios of formation and evolution of the Galaxy. We used the sample of open clusters available in the final release of the Gaia-ESO survey to trace the Galactic radial abundance and abundance to iron ratio gradients, and their time evolution. We selected member stars in 62 open clusters, with ages from 0.1 to about 7~Gyr, located in the Galactic thin disc at Galactocentric radii from about 6 to 21~kpc. We analysed the shape of the resulting [Fe/H] gradient, the average gradients [El/H] and [El/Fe] combining elements belonging to four different nucleosynthesis channels, and their individual abundance and abundance ratio gradients. We also investigated the time evolution of the gradients dividing open clusters in three age bins. The[Fe/H] gradient has a slope of -0.054 dex~kpc-1. We saw different behaviours for elements belonging to different channels. We found that the youngest clusters in the inner disc have lower metallicity than their older counterpart and they outline a flatter gradient. We considered some possible explanations, including the effects of gas inflow and migration. We suggested that it might be a bias introduced by the standard spectroscopic analysis producing lower metallicities in low gravity stars. To delineate the shape of the `true' gradient, we should limit our analysis to stars with low surface gravity logg>2.5 and xi<1.8 km~s-1. Based on this reduced sample, we can conclude that the gradient has minimally evolved over the time-frame outlined by the open clusters, indicating a slow and stationary formation of the thin disc in the latest Gyr. We found a secondary role of clusters' migration in shaping the gradient, with a more prominent role of migration for the oldest clusters.Comment: 25 pages, 14 figures and 4 tables in the main text, 3 figures and 7 tables in the Appendix. Accepted for publication in A&

    Horizons: nuclear astrophysics in the 2020s and beyond

    Get PDF
    Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities

    Horizons: Nuclear Astrophysics in the 2020s and Beyond

    Get PDF
    Nuclear Astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.Comment: 96 pages. Submitted to Journal of Physics

    The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products

    Get PDF
    Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products

    Abundances of neutron-capture elements in thin- and thick-disc stars in the solar neighbourhood

    No full text
    Aims. The aim of this work is to determine abundances of neutron-capture elements for thin- and thick-disc F, G, and K stars in several selected sky fields near the north ecliptic pole and to compare the results with the Galactic chemical evolution models, to explore elemental gradients according to stellar ages, mean galactocentric distances, and maximum heights above the Galactic plane. Methods. The observational data were obtained with the 1.65 m telescope at the Molėtai Astronomical Observatory and a fibre-fed high-resolution spectrograph covering a full visible wavelength range (4000−8500 Å). Elemental abundances were determined using a differential line-by-line spectrum synthesis using the TURBOSPECTRUM code with the MARCS stellar model atmospheres and accounting for the hyperfine-structure effects. Results. We determined abundances of Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, and Eu for 424 thin- and 82 thick-disc stars. The sample of thick-disc stars shows a clearly visible decrease in [Eu/Mg] with increasing metallicity compared to the thin-disc stars, bringing more evidence of a different chemical evolution in these two Galactic components. Abundance correlation with age slopes for the investigated thin-disc stars are slightly negative for the majority of s-process dominated elements, while r-process dominated elements have positive correlations. Our sample of thin-disc stars with ages spanning from 0.1 to 9 Gyr gives the [Y/Mg] = 0.022 (±0.015)−0.027 (±0.003)⋅age [Gyr] relation. However, for the thick-disc stars, when we also took data from other studies into account, we found that [Y/Mg] cannot serve as an age indicator. The radial abundance-to-iron gradients in the thin disc are negligible for the s-process dominated elements and become positive for the r-process dominated elements. The vertical gradients are negative for the light s-process dominated elements and become positive for the r-process dominated elements. In the thick disc, the radial abundance-to-iron slopes are negligible, and the vertical slopes are predominantly negative

    Magnetic-buoyancy-induced mixing in AGB stars: a theoretical explanation of the non-universal relation of [Y/Mg] to age

    Get PDF
    Context. Abundance ratios involving Y or other slow-neutron capture elements are routinely used to infer stellar ages. Aims. We aim to explain the observed [Y/H] and [Y/Mg] abundance ratios of star clusters located in the inner disc with a new prescription for mixing in asymptotic giant branch (AGB) stars. Methods. In a Galactic chemical evolution model, we adopted a new set of AGB stellar yields in which magnetic mixing was included. We compared the results of the model with a sample of abundances and ages of open clusters located at different Galactocentric distances. Results. The magnetic mixing causes a less efficient production of Y at high metallicity. A non-negligible fraction of stars with super-solar metallicity is produced in the inner disc, and their Y abundances are affected by the reduced yields. The results of the new AGB model qualitatively reproduce the observed trends for both [Y/H] and [Y/Mg] versus age at different Galactocetric distances. Conclusions. Our results confirm from a theoretical point of view that the relation between [Y/Mg] and stellar age cannot be ‘universal’, that is, cannot be the same in every part of the Galaxy. It has a strong dependence on the star formation rate, on the s-process yields, and on their relation with metallicity, and it therefore varies throughout the Galactic disc

    The Gaia-ESO Survey: Age-chemical-clock relations spatially resolved in the Galactic disc

    Get PDF
    The last decade has seen a revolution in our knowledge of the Galaxy thanks to the Gaia and asteroseismic space missions and the ground-based spectroscopic surveys. To complete this picture, it is necessary to map the ages of its stellar populations. During recent years, the dependence on time of abundance ratios involving slow (s) neutron-capture and α\alpha elements (called chemical-clocks) has been used to provide estimates of stellar ages, usually in a limited volume close to the Sun. We aim to analyse the relations of chemical clocks in the Galactic disc extending the range to RGC∌_{\rm GC}\sim6-20~kpc. Using the sixth internal data release of the Gaia-ESO survey, we calibrated several relations between stellar ages and abundance ratios [s/α\alpha] using a sample of open clusters, the largest one so far used with this aim. Thanks to their wide galactocentric coverage, we investigated the radial variations of the shape of these relations, confirming their non-universality. We estimated our accuracy and precision in recovering the global ages of open clusters, and the ages of their individual members. We applied the multi-variate relations with the highest correlation coefficients to the field star population. We confirm that there is no single age-chemical clock relationship valid for the whole disc, but that there is a dependence on the galactocentric position, which is related to the radial variation of the star formation history combined with the non-monotonic dependence on metallicity of the yields of the s-process elements from low- and intermediate-mass stars. Finally, the abundance ratios [Ba/α\alpha] are more sensitive to age than those with [Y/α\alpha] for young disc stars, and their slopes vary less with galactocentric distance.Comment: 14 pages, 10 figures + Appendix (3 tables and 2 figures

    Horizons : nuclear astrophysics in the 2020s and beyond

    No full text
    Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.peerReviewe

    Horizons: Nuclear Astrophysics in the 2020s and Beyond

    Get PDF
    Nuclear Astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities
    corecore