285 research outputs found

    Is emamectin benzoate effective against the different stages of Spodoptera exigua (Hübner) (Lepidoptera, Noctuidae)?

    Get PDF
    peer-reviewedThis work was partially supported by the Spanish Ministry of Science and Innovation (project AGL 2007-66130-C03-02 to P. Medina). F. Amor and P. Bengochea acknowledge the ministry of Education and Culture and the Technical University of Madrid (UPM) for the doctoral fellowships. Special thanks to Syngenta Agro S.A. for their support.The beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera, Noctuidae), is a major polyphagous pest in greenhouses and open fields worldwide and also a main problem in sweet pepper greenhouses. The effectiveness of the pesticide emamectin benzoate was tested in the laboratory on different stages of S. exigua using different concentrations and uptake routes. After dipping young (48-h-old) S. exigua eggs in emamectin benzoate at 0.5, 1 and 1.5 mg/L a.i. the chemical did not exhibit any ovicidal activity. There was, however, progressive neonate mortality at all concentrations, culminating at 72 hours after hatching, when 100% of the larvae from the treated young eggs died. Second and fourth instar S. exigua larvae did not exhibit significant mortality when exposed to the inert surfaces which were treated. In contrast, ingesting a diet contaminated with 0.5 mg/L a.i. of emamectin benzoate caused 100% mortality in L2 and L4 larvae 24 and 72 hours after ingestion, respectively. The LC50 value of the compound against L4 larvae that fed on sprayed sweet pepper leaves for 24 hours was 0.81 mg/L a.i.. When adults were fed on a solution of 0.5 mg/L a.i., there was a reduction in the female and male lifespan of 29.3% and 55.3%, respectively. Fecundity was reduced by more than 99%. These data suggest that emamectin benzoate is not only a useful insecticide when ingested by beet armyworm larvae but it also has ovolarvicidal and adult activity.Spanish Ministry of Science and Innovatio

    A fitness assay for comparing RNAi effects across multiple C. elegans genotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNAi technology by feeding of <it>E. coli </it>containing dsRNA in <it>C. elegans </it>has significantly contributed to further our understanding of many different fields, including genetics, molecular biology, developmental biology and functional genomics. Most of this research has been carried out in a single genotype or genetic background. However, RNAi effects in one genotype do not reveal the allelic effects that segregate in natural populations and contribute to phenotypic variation.</p> <p>Results</p> <p>Here we present a method that allows for rapidly comparing RNAi effects among diverse genotypes at an improved high throughput rate. It is based on assessing the fitness of a population of worms by measuring the rate at which <it>E. coli </it>is consumed. Critically, we demonstrate the analytical power of this method by QTL mapping the loss of RNAi sensitivity (in the germline) in a recombinant inbred population derived from a cross between Bristol and a natural isolate from Hawaii. Hawaii has lost RNAi sensitivity in the germline. We found that polymorphisms in <it>ppw-1 </it>contribute to this loss of RNAi sensitivity, but that other loci are also likely to be important.</p> <p>Conclusions</p> <p>In summary, we have established a fast method that improves the throughput of RNAi in liquid, that generates quantitative data, that is easy to implement in most laboratories, and importantly that enables QTL mapping using RNAi.</p

    Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk: An IMI Direct study

    Get PDF
    Background: Dietary advice remains the cornerstone of prevention and management of type 2 diabetes (T2D). However, understanding the efficacy of dietary interventions is confounded by the challenges inherent in assessing free living diet. Here we profiled dietary metabolites to investigate glycaemic deterioration and cardiometabolic risk in people at risk of or living with T2D. Methods: We analysed data from plasma collected at baseline and 18-month follow-up in individuals from the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohort 1 n=403 individuals with normal or impaired glucose regulation (prediabetic) and cohort 2 n=458 individuals with new onset of T2D. A dietary metabolite profile model (Tpred) was constructed using multivariate regression of 113 plasma metabolites obtained from targeted metabolomics assays. The continuous Tpred score was used to explore the relationships between diet, glycaemic deterioration and cardio-metabolic risk via multiple linear regression models. Findings: A higher Tpred was associated with healthier diets high in wholegrain (β=0.004 g, p=0.02 and β=0.003 g, p=0.03) and lower energy intake (β=-0.0002 kcal, p=0.04 and β=-0.0002 kcal, p=0.003), and saturated fat (β=-0.03 g, p<.0001 and β=-0.03 g, p<.0001), respectively for cohort 1 and 2. In both cohorts a higher Tpred score was also associated with lower total body adiposity and improved lipid profiles HDL-cholesterol (β=0.07 mmol/L, p<.0001), (β=0.08 mmol/L, p=0.0002), and triglycerides (β=-0.1 mmol/L, p=0.003), (β=-0.2 mmol/L, p=0.0002), respectively for cohort 1 and 2. In cohort 2, the Tpred score was negatively associated with liver fat content (β=-0.74 %, p<.0001), and lower fasting concentrations of HbA1c (β=-0.9mmol/mol, p=0.02), glucose (β=-0.2 mmol/L, p=0.01) and insulin (β=-11.0 pmol/mol, p=0.01). Longitudinal analysis showed at 18-month follow up a higher Tpred score was also associated lower total body adiposity in both cohorts and lower fasting glucose (β=-0.2 mmol/L, p=0.03) and insulin (β=-9.2 pmol/mol, p=0.04) concentrations in cohort 2. Interpretation: Plasma dietary metabolite profiling provides objective measures of diet intake, showing a relationship to glycaemic deterioration and cardiometabolic health

    Genome-Wide Association Reveals Pigmentation Genes Play a Role in Skin Aging

    Get PDF
    Loss of fine skin patterning is a sign of both aging and photoaging. Studies investigating the genetic contribution to skin patterning offer an opportunity to better understand a trait that influences both physical appearance and risk of keratinocyte skin cancer. We undertook a meta-analysis of genome-wide association studies (GWAS) of a measure of skin pattern (microtopography score) damage in 1,671 twin pairs and 1,745 singletons (N = 5,087) drawn from three independent cohorts. We identified that rs185146 near SLC45A2 is associated with a skin aging trait (p = 4.1 × 10-9); to our knowledge this is previously unreported. We also confirm previously identified loci, rs12203592 near IRF4 (p = 8.8 × 10-13), and rs4268748 near MC1R (p = 1.2 × 10-15). At all three loci we highlight putative functionally relevant SNPs. There are a number of red hair/low pigmentation alleles of MC1R; we found that together these MC1R alleles explained 4.1% of variance in skin pattern damage. We also show that skin aging and reported experience of sunburns was proportional to the degree of penetrance for red hair of alleles of MC1R. Our work has uncovered genetic contributions to skin aging and confirmed previous findings, showing that pigmentation is a critical determinate of skin aging

    Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D

    Get PDF
    Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active regulatory sequences in islets, with reduced eQTL effect size observed in the stretch enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL signals with T2D risk variants identified in genome-wide association studies; and (d) colocalization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in disease relevant tissues.Peer reviewe

    Population Differences in Transcript-Regulator Expression Quantitative Trait Loci

    Get PDF
    Gene expression quantitative trait loci (eQTL) are useful for identifying single nucleotide polymorphisms (SNPs) associated with diseases. At times, a genetic variant may be associated with a master regulator involved in the manifestation of a disease. The downstream target genes of the master regulator are typically co-expressed and share biological function. Therefore, it is practical to screen for eQTLs by identifying SNPs associated with the targets of a transcript-regulator (TR). We used a multivariate regression with the gene expression of known targets of TRs and SNPs to identify TReQTLs in European (CEU) and African (YRI) HapMap populations. A nominal p-value of <1×10−6 revealed 234 SNPs in CEU and 154 in YRI as TReQTLs. These represent 36 independent (tag) SNPs in CEU and 39 in YRI affecting the downstream targets of 25 and 36 TRs respectively. At a false discovery rate (FDR) = 45%, one cis-acting tag SNP (within 1 kb of a gene) in each population was identified as a TReQTL. In CEU, the SNP (rs16858621) in Pcnxl2 was found to be associated with the genes regulated by CREM whereas in YRI, the SNP (rs16909324) was linked to the targets of miRNA hsa-miR-125a. To infer the pathways that regulate expression, we ranked TReQTLs by connectivity within the structure of biological process subtrees. One TReQTL SNP (rs3790904) in CEU maps to Lphn2 and is associated (nominal p-value = 8.1×10−7) with the targets of the X-linked breast cancer suppressor Foxp3. The structure of the biological process subtree and a gene interaction network of the TReQTL revealed that tumor necrosis factor, NF-kappaB and variants in G-protein coupled receptors signaling may play a central role as communicators in Foxp3 functional regulation. The potential pleiotropic effect of the Foxp3 TReQTLs was gleaned from integrating mRNA-Seq data and SNP-set enrichment into the analysis

    Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study

    Get PDF
    The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous. Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clinical utility may be limited if categorical representations of complex phenotypes are suboptimal. We apply a soft-clustering (archetype) method to characterize newly diagnosed T2D based on 32 clinical variables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months. Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes and correlate with multiple circulating biomarkers. One archetype associated with obesity, insulin resistance, dyslipidemia, and impaired β cell glucose sensitivity corresponds with the fastest disease progression and highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be mapped to heterogeneity in individual etiological processes, providing a potential route to personalized treatments

    Genotype-dependent lifespan effects in peptone deprived Caenorhabditis elegans

    Get PDF
    Dietary restriction appears to act as a general non-genetic mechanism that can robustly prolong lifespan. There have however been reports in many systems of cases where restricted food intake either shortens, or does not affect, lifespan. Here we analyze lifespan and the effect of food restriction via deprived peptone levels on lifespan in wild isolates and introgression lines (ILs) of the nematode Caenorhabditis elegans. These analyses identify genetic variation in lifespan, in the effect of this variation in diet on lifespan and also in the likelihood of maternal, matricidal, hatching. Importantly, in the wild isolates and the ILs, we identify genotypes in which peptone deprivation mediated dietary restriction reduces lifespan. We also identify, in recombinant inbred lines, a locus that affects maternal hatching, a phenotype closely linked to dietary restriction in C. elegans. These results indicate that peptone deprivation mediated dietary restriction affects lifespan in C. elegans in a genotype-dependent manner, reducing lifespan in some genotypes. This may operate by a mechanism similar to dietary restriction
    corecore