Abstract

Background: Dietary advice remains the cornerstone of prevention and management of type 2 diabetes (T2D). However, understanding the efficacy of dietary interventions is confounded by the challenges inherent in assessing free living diet. Here we profiled dietary metabolites to investigate glycaemic deterioration and cardiometabolic risk in people at risk of or living with T2D. Methods: We analysed data from plasma collected at baseline and 18-month follow-up in individuals from the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohort 1 n=403 individuals with normal or impaired glucose regulation (prediabetic) and cohort 2 n=458 individuals with new onset of T2D. A dietary metabolite profile model (Tpred) was constructed using multivariate regression of 113 plasma metabolites obtained from targeted metabolomics assays. The continuous Tpred score was used to explore the relationships between diet, glycaemic deterioration and cardio-metabolic risk via multiple linear regression models. Findings: A higher Tpred was associated with healthier diets high in wholegrain (β=0.004 g, p=0.02 and β=0.003 g, p=0.03) and lower energy intake (β=-0.0002 kcal, p=0.04 and β=-0.0002 kcal, p=0.003), and saturated fat (β=-0.03 g, p<.0001 and β=-0.03 g, p<.0001), respectively for cohort 1 and 2. In both cohorts a higher Tpred score was also associated with lower total body adiposity and improved lipid profiles HDL-cholesterol (β=0.07 mmol/L, p<.0001), (β=0.08 mmol/L, p=0.0002), and triglycerides (β=-0.1 mmol/L, p=0.003), (β=-0.2 mmol/L, p=0.0002), respectively for cohort 1 and 2. In cohort 2, the Tpred score was negatively associated with liver fat content (β=-0.74 %, p<.0001), and lower fasting concentrations of HbA1c (β=-0.9mmol/mol, p=0.02), glucose (β=-0.2 mmol/L, p=0.01) and insulin (β=-11.0 pmol/mol, p=0.01). Longitudinal analysis showed at 18-month follow up a higher Tpred score was also associated lower total body adiposity in both cohorts and lower fasting glucose (β=-0.2 mmol/L, p=0.03) and insulin (β=-9.2 pmol/mol, p=0.04) concentrations in cohort 2. Interpretation: Plasma dietary metabolite profiling provides objective measures of diet intake, showing a relationship to glycaemic deterioration and cardiometabolic health

    Similar works

    Available Versions

    Last time updated on 05/09/2020