141 research outputs found
Linkage analysis of high myopia susceptibility locus in 26 families
Purpose: We conducted a linkage analysis in high myopia families to replicate suggestive results from chromosome 7q36 using a model of autosomal dominant inheritance and genetic heterogeneity. We also performed a genome-wide scan to identify novel loci. Methods: Twenty-six families, with at least two high-myopic subjects (ie. refractive value in the less affected eye of -5 diopters) in each family, were included. Phenotypic examination included standard autorefractometry, ultrasonographic eye length measurement, and clinical confirmation of the non-syndromic character of the refractive disorder. Nine families were collected de novo including 136 available members of whom 34 were highly myopic subjects. Twenty new subjects were added in 5 of the 17 remaining families. A total of 233 subjects were submitted to a genome scan using ABI linkage mapping set LMSv2-MD-10, additional markers in all regions where preliminary LOD scores were greater than 1.5 were used. Multipoint parametric and non-parametric analyses were conducted with the software packages Genehunter 2.0 and Merlin 1.0.1. Two autosomal recessive, two autosomal dominant, and four autosomal additive models were used in the parametric linkage analyses. Results: No linkage was found using the subset of nine newly collected families. Study of the entire population of 26 families with a parametric model did not yield a significant LOD score (>3), even for the previously suggestive locus on 7q36. A non-parametric model demonstrated significant linkage to chromosome 7p15 in the entire population (Z-NPL=4.07, p=0.00002). The interval is 7.81 centiMorgans (cM) between markers D7S2458 and D7S2515. Conclusions: The significant interval reported here needs confirmation in other cohorts. Among possible susceptibility genes in the interval, certain candidates are likely to be involved in eye growth and development
Multiparametric radiobiological assays show that variation of X-ray energy strongly impacts relative biological effectiveness: comparison between 220 kV and 4 MV
International audienceBased on classic clonogenic assay, it is accepted by the scientific community that, whatever the energy, the relative biological effectiveness of X-rays is equal to 1. However, although X-ray beams are widely used in diagnosis, interventional medicine and radiotherapy, comparisons of their energies are scarce. We therefore assessed in vitro the effects of low- and high-energy X-rays using Human umbilical vein endothelial cells (HUVECs) by performing clonogenic assay, measuring viability/mortality, counting γ-H2AX foci, studying cell proliferation and cellular senescence by flow cytometry and by performing gene analysis on custom arrays. Taken together, excepted for γ-H2AX foci counts, these experiments systematically show more adverse effects of high energy X-rays, while the relative biological effectiveness of photons is around 1, whatever the quality of the X-ray beam. These results strongly suggest that multiparametric analysis should be considered in support of clonogenic assay
Benzo[a]pyrene, Aflatoxine B1 and Acetaldehyde Mutational Patterns in TP53 Gene Using a Functional Assay: Relevance to Human Cancer Aetiology
Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B1 exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B1 and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers
High throughput toxicity screening and intracellular detection of nanomaterials
With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety—preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read-across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter-experimental variation, and makes substantial savings in time and cost. HTS/HCA approaches facilitate the classification of key biological indicators of NM-cell interactions. Validation of in vitro HTS tests is required, taking account of relevance to in vivo results. HTS/HCA approaches are needed to assess dose- and time-dependent toxicity, allowing prediction of in vivo adverse effects. Several HTS/HCA methods are being validated and applied for NM testing in the FP7 project NANoREG, including Label-free cellular screening of NM uptake, HCA, High throughput flow cytometry, Impedance-based monitoring, Multiplex analysis of secreted products, and genotoxicity methods—namely High throughput comet assay, High throughput in vitro micronucleus assay, and γH2AX assay. There are several technical challenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled with characterization of NMs in exposure medium prior to the test; possible interference of NMs with HTS/HCA techniques is another concern. Advantages and challenges of HTS/HCA approaches in NM safety are discussed.publishedVersio
Interlaboratory comparison study of the Colony Forming Efficiency assay for assessing cytotoxicity of nanomaterials
Nanotechnology has gained importance in the past years as it provides opportunities for industrial growth and innovation. However, the increasing use of manufactured nanomaterials (NMs) in a number of commercial applications and consumer products raises also safety concerns and questions regarding potential unintended risks to humans and the environment. Since several years the European Commission’s Joint Research Centre (JRC) is putting effort in the development, optimisation and harmonisation of in vitro test methods suitable for screening and hazard assessment of NMs. Work is done in collaboration with international partners, in particular the Organisation for Economic Co-operation and Development (OECD). This report presents the results from an interlaboratory comparison study of the in vitro Colony Forming Efficiency (CFE) cytotoxicity assay performed in the frame of OECD's Working Party of Manufactured Nanomaterials (WPMN). Twelve laboratories from European Commission, France, Italy, Japan, Poland, Republic of Korea, South Africa and Switzerland participated in the study coordinated by JRC. The results show that the CFE assay is a suitable and robust in vitro method to assess cytotoxicity of NMs. The assay protocol is well defined and is easily and reliably transferable to other laboratories. The results obtained show good intra and interlaboratory reproducibility of the assay for both the positive control and the tested nanomaterials.
In conclusion the CFE assay can be recommended as a building block of an in vitro testing battery for NMs toxicity assessment. It could be used as a first choice method to define dose-effect relationships for other in vitro assays.JRC.I.4-Nanobioscience
Professional conceptualisation and accomplishment of patient safety in mental healthcare: an ethnographic approach
<p>Abstract</p> <p>Background</p> <p>This study seeks to broaden current understandings of what patient safety means in mental healthcare and how it is accomplished. We propose a qualitative observational study of how safety is produced or not produced in the complex context of everyday professional mental health practice. Such an approach intentionally contrasts with much patient safety research which assumes that safety is achieved and improved through top-down policy directives. We seek instead to understand and articulate the connections and dynamic interactions between people, materials, and organisational, legal, moral, professional and historical safety imperatives as they come together at particular times and places to perform safe or unsafe practice. As such we advocate an understanding of patient safety 'from the ground up'.</p> <p>Methods/Design</p> <p>The proposed project employs a six-phase data collection framework in two mental health settings: an inpatient unit and a community team. The first four phases comprise multiple modes of focussed, unobtrusive observation of professionals at work, to enable us to trace the conceptualisation and enactment of safety as revealed in dialogue and narrative, use of artefacts and space, bodily activity and patterns of movement, and in the accomplishment of specific work tasks. An interview phase and a social network analysis phase will subsequently be conducted to offer comparative perspectives on the observational data. This multi-modal and holistic approach to studying patient safety will complement existing research, which is dominated by instrumentalist approaches to discovering factors contributing to error, or developing interventions to prevent or manage adverse events.</p> <p>Discussion</p> <p>This ethnographic research framework, informed by the principles of practice theories and in particular actor-network ideas, provides a tool to aid the understanding of patient safety in mental healthcare. The approach is novel in that it seeks to articulate an 'anatomy of patient safety' as it actually occurs, in terms of the networks of elements coalescing to enable the conceptual and material performance of safety in mental health settings. By looking at <it>how </it>patient safety happens or does not happen, this study will enable us to better understand how we might in future productively tackle its improvement.</p
Expression analysis of secreted and cell surface genes of five transformed human cell lines and derivative xenograft tumors
BACKGROUND: Since the early stages of tumorigenesis involve adhesion, escape from immune surveillance, vascularization and angiogenesis, we devised a strategy to study the expression profiles of all publicly known and putative secreted and cell surface genes. We designed a custom oligonucleotide microarray containing probes for 3531 secreted and cell surface genes to study 5 diverse human transformed cell lines and their derivative xenograft tumors. The origins of these human cell lines were lung (A549), breast (MDA MB-231), colon (HCT-116), ovarian (SK-OV-3) and prostate (PC3) carcinomas. RESULTS: Three different analyses were performed: (1) A PCA-based linear discriminant analysis identified a 54 gene profile characteristic of all tumors, (2) Application of MANOVA (Pcorr < .05) to tumor data revealed a larger set of 149 differentially expressed genes. (3) After MANOVA was performed on data from individual tumors, a comparison of differential genes amongst all tumor types revealed 12 common differential genes. Seven of the 12 genes were identified by all three analytical methods. These included late angiogenic, morphogenic and extracellular matrix genes such as ANGPTL4, COL1A1, GP2, GPR57, LAMB3, PCDHB9 and PTGER3. The differential expression of ANGPTL4 and COL1A1 and other genes was confirmed by quantitative PCR. CONCLUSION: Overall, a comparison of the three analyses revealed an expression pattern indicative of late angiogenic processes. These results show that a xenograft model using multiple cell lines of diverse tissue origin can identify common tumorigenic cell surface or secreted molecules that may be important biomarker and therapeutic discoveries
Recommended from our members
Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells
Invariant natural killer T cells (iNKT cells) are innate-like T lymphocytes that act as critical regulators of the immune response. To better characterize this population, we profiled gene expression in iNKT cells during ontogeny and in peripheral subsets as part of the Immunological Genome Project. High-resolution comparative transcriptional analyses defined developmental and subset-specific programs of gene expression by iNKT cells. In addition, we found that iNKT cells shared an extensive transcriptional program with NK cells, similar in magnitude to that shared with major histocompatibility complex (MHC)-restricted T cells. Notably, the program shared by NK cells and iNKT cells also operated constitutively in γδ T cells and in adaptive T cells after activation. Together our findings highlight a core effector program regulated distinctly in innate and adaptive lymphocytes
Conditionally Replicating Adenovirus Expressing TIMP2 Increases Survival in a Mouse Model of Disseminated Ovarian Cancer
Ovarian cancer remains difficult to treat mainly due to presentation of the disease at an advanced stage. Conditionally-replicating adenoviruses (CRAds) are promising anti-cancer agents that selectively kill the tumor cells. The present study evaluated the efficacy of a novel CRAd (Ad5/3-CXCR4-TIMP2) containing the CXCR4 promoter for selective viral replication in cancer cells together with TIMP2 as a therapeutic transgene, targeting the matrix metalloproteases (MMPs) in a murine orthotopic model of disseminated ovarian cancer. An orthotopic model of ovarian cancer was established in athymic nude mice by intraperitonal injection of the human ovarian cancer cell line, SKOV3-Luc, expressing luciferase. Upon confirmation of peritoneal dissemination of the cells by non-invasive imaging, mice were randomly divided into four treatment groups: PBS, Ad-ΔE1-TIMP2, Ad5/3-CXCR4, and Ad5/3-CXCR4-TIMP2. All mice were imaged weekly to monitor tumor growth and were sacrificed upon reaching any of the predefined endpoints, including high tumor burden and significant weight loss along with clinical evidence of pain and distress. Survival analysis was performed using the Log-rank test. The median survival for the PBS cohort was 33 days; for Ad-ΔE1-TIMP2, 39 days; for Ad5/3-CXCR4, 52.5 days; and for Ad5/3-CXCR4-TIMP2, 63 days. The TIMP2-armed CRAd delayed tumor growth and significantly increased survival when compared to the unarmed CRAd. This therapeutic effect was confirmed to be mediated through inhibition of MMP9. Results of the in vivo study support the translational potential of Ad5/3-CXCR4-TIMP2 for treatment of human patients with advanced ovarian cancer
MACI - a new era?
Full thickness articular cartilage defects have limited regenerative potential and are a significant source of pain and loss of knee function. Numerous treatment options exist, each with their own advantages and drawbacks. The goal of this review is to provide an overview of the problem of cartilage injury, a brief description of current treatment options and outcomes, and a discussion of the current principles and technique of Matrix-induced Autologous Chondrocyte Implantation (MACI). While early results of MACI have been promising, there is currently insufficient comparative and long-term outcome data to demonstrate superiority of this technique over other methods for cartilage repair
- …