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Abstract

Invariant natural killer T (iNKT) cells are innate-like T lymphocytes that act as critical regulators 

of the immune response. To better characterize this population, we profiled iNKT cell gene 

expression during ontogeny and in peripheral subsets as part of the Immunological Genome 

Project (ImmGen). High-resolution comparative transcriptional analyses defined developmental 

and subset-specific iNKT cell gene expression programs. In addition, iNKT cells were found to 

share an extensive transcriptional program with natural killer (NK) cells, similar in magnitude to 

that shared with major histocompatibility complex (MHC)-restricted T cells. Strikingly, the NK- 

iNKT program also operated constitutively in T cells and in adaptive T cells following 

activation. Together, our findings highlight a core effector program regulated distinctly in innate 

and adaptive lymphocytes.

Introduction

The Immunological Genome Project (ImmGen) is a consortium of immunologists and 

computational biologists who aim, using rigorously standardized experimental and analysis 

pipelines, to generate a high-resolution, comprehensive definition of gene expression and 

regulatory networks in the mouse immune system1. In this context, we determined global 

gene expression profiles for thymic and peripheral invariant natural killer T (iNKT) cell 

subsets to gain insight into the iNKT cell transcriptional landscape, its unique features, and 

the relationships of iNKT cells to other innate and adaptive cell lineages.
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iNKT cells are a subset of  T cells with an semi-invariant T cell antigen receptor (TCR) 

recognizing lipid antigens presented by CD1d2. By rapidly producing cytokines, these cells 

modulate both the innate and adaptive arms of the immune system, critically affecting 

biological processes in anti-microbial immunity, tumor rejection, and inflammation3. Like 

MHC-restricted T cells, iNKT cells undergo thymic differentiation with somatic 

recombination4, recognize self and foreign antigens2,3, secrete TH1, TH 2, and TH17 

cytokines5, and provide help to B cells6.

The term “ NK T”  was coined to reflect the expression of the natural killer (NK) cell marker 

NK1.17. While a number of other NK receptors (NKRs) can also be expressed by iNKT 

cells8, the validity of the term “ NKT”  has been called into question9 because iNKT cells are 

developmentally more closely related to the T than the NK cell lineage, and because NKRs 

are neither specific to iNKT cells nor expressed on all iNKT cells.

While a central role for TCR-mediated activation in iNKT cell biology is clear, striking 

parallels in the behavior of both NK and iNKT cells have nevertheless emerged. The 

homeostatic distribution and survival requirements of iNKT cells are similar to those of NK 

cells10,11,12,13. Also comparable are their trafficking and activation kinetics. Both cell types 

constitutively express inflammatory chemokine receptors, accumulate at sites of infection 

within 24–72 h, and exert their effector functions without a priming requirement14,15. In 

addition, evidence suggests that iNKT cells, like NK cells, can use activating NKRs to sense 

stress-induced ligands15–19. iNKT cells also detect cellular stress via their TCRs, which are 

reactive to inflammation-induced alterations in CD1d-presented self-lipid antigens20–22. 

Finally, NK and iNKT cells engage in comparable bidirectional interactions with antigen 

presenting cells (APCs) during which APC-derived inflammatory cytokines potentiate NK 

and iNKT responses to surface ligands, and NK or iNKT cells, in return, promote APC 

maturation23–28.

In this report, we shed light on the transcriptional programs operating over the course of 

iNKT cell development and in peripheral CD4+ and CD4− iNKT cell subsets. Utilizing the 

ImmGen compendium, which allows direct comparison of gene expression in developing 

and mature iNKT, NK, and T cell subsets, we assess the transcriptional basis for NK- iNKT 

similarities. Our data demonstrate that shared NK- iNKT transcriptional programs are more 

extensive than currently appreciated and comparable in breadth to those shared by iNKT and 

MHC-restricted T cells. Finally, we show that the transcriptional patterns expressed 

constitutively by both NK and iNKT cells represent a core effector program also operational 

in other innate lymphocytes and induced in adaptive lymphocyte populations following 

activation.

Results

iNKT cell-specific developmental programs

iNKT cells, like other T lymphocytes, mature in the thymus, where they diverge from MHC-

restricted  T cells at the CD4+ CD8+ double-positive (DP) stage. iNKT cells subsequently 

undergo sequential stages of differentiation characterized by differential expression of CD44 

and NK1.14 (Supplementary Fig. 1). To characterize the developmental transcriptional 
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programs in iNKT cells in relation to those operating in maturing adaptive  T cells, we 

profiled CD44− NK1.1− (stage 1), CD44+NK1.1− (stage 2) and CD44+NK1.1+ (stage 3) 

thymic iNKT cells in the context of the ImmGen Project (Fig. 1a). 1850, 155 and 697 genes 

were differentially expressed from DP to stage 1, stage 1 to stage 2, and stage 2 to stage 3, 

respectively, using an arbitrary fold change (FC) threshold of FC > 2 (Fig. 1b, c). 

Transcripts modulated between thymic iNKT cell populations included a number of genes 

involved in iNKT cell maturation4 as well as several genes of unknown function 

(Supplementary Tables 1–6). At the DP branch point, we identified a subset of genes 

modulated selectively by stage 1 iNKT cells but not by early stage CD4+ adaptive T cells 

(CD4+8int) (Fig. 1d). Although some of these genes such as Zbtb16 (PLZF) and Vdr 

(vitamin D receptor) are known to play important functions in iNKT cell lineage 

specification29–31, many have not yet been linked to iNKT cell development 

(Supplementary Tables 7, 8). At the last iNKT cell maturation stage, many of the most 

strongly upregulated genes belonged to the killer lectin receptor family, which encodes 

activating and inhibitory NK receptors (NKRs) (Fig. 1c, bottom panel). By the final stage of 

ontogeny, iNKT cells expressed several NKR mRNAs at levels comparable to those of 

splenic NK cells (Supplementary Fig. 2a). In addition, NKR upregulation occurs selectively 

in developing iNKT cells but not in maturing MHC-restricted T cells or at any stage in early 

T cell development, with a few exceptions (Fig. 1e). Flow cytometric analysis of thymic 

iNKT cells confirmed the acquisition of surface NKRs over the course of maturation (Fig. 1f 

and Supplementary Fig. 2b). K-means clustering analysis determined that a large number of 

genes follow the same expression kinetics as NKRs over the course of the DP to stage 3 

transition (Fig. 1g) suggesting that the progressive upregulation of NKRs may be part of a 

broader gene program. Together, these data comprehensively characterize shared and 

distinct gene expression changes occurring in maturing iNKT cells in the broader context of 

 T cell development.

Peripheral iNKT cell transcriptional signatures

In both mouse and human, differential cytokine production has been reported between CD4+ 

and CD4− iNKT cells5,32,33. In addition, iNKT cell subsets from the liver have also been 

suggested to be functionally distinct34. To characterize the transcriptional basis that may 

underlie subset-specific functional differences, we assessed the gene expression profiles of 

CD4+ and CD4− iNKT cells sorted from the spleen, liver and lungs of mice. 159 and 261 

genes were differentially expressed between CD4+ and CD4− iNKT cells from the spleen or 

lung, respectively, while only 17 transcripts were differentially expressed between the liver 

subsets (Fig. 2a, Supplementary Fig. 3 and Supplementary Tables 9–14), suggesting that 

splenic and pulmonary iNKT cell subsets may be more functionally distinct from each other 

than are liver iNKT cell subsets. In all three tissues, we found that a number of NKRs were 

among the most differentially expressed genes, with elevated levels in CD4− compared to 

CD4+ subsets (Fig. 2a and Supplementary Fig. 3). In liver and spleen, this reflected a larger 

percentage of NKR-positive cells in CD4− compared to CD4+ iNKT cells, as determined by 

flow cytometry (Fig. 2b). NKR mRNA expression in peripheral iNKT cells, although 

reduced compared to stage 3 thymic iNKT cells, was maintained at higher levels than most 

MHC-restricted  T cell subsets (Fig. 2c and data not shown). In addition, comparison of 

liver iNKT cell subsets to their splenic counterparts revealed that CD4− populations are 
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more transcriptionally similar to one another than are CD4+ iNKT cells across tissues. A 

small number of genes were expressed differentially between tissues regardless of CD4 

expression (Supplementary Fig. 4), supporting the idea that iNKT cells subsets may perform 

organ-specific functions.

An extensive NK- iNKT shared transcriptional program

Because iNKT cells share broad functional features with NK cells, we hypothesized that 

NKR expression by iNKT cells might reflect a much larger NK-NKT shared transcriptional 

program than currently appreciated. To assess the extent of transcriptional relatedness 

between iNKT cells and NK cells at a global level, and to compare the NK- iNKT 

relationship and with that of iNKT to T cells, we calculated Euclidian distances between 

subsets of steady-state NK, T and iNKT cells. Euclidian distance, a measure of the similarity 

between the gene expression patterns of pairwise compared subsets, was determined using 

the 15% of gene probes with the highest variability among the subsets analyzed, and is 

displayed as a matrix (Fig. 3). This revealed a strong degree of similarity between mature 

iNKT and NK cell gene expression (Fig. 3, top panel, area i), contrasting greater distances 

observed between all MHC-restricted T cells and NK cells (Fig. 3, top panel, area ii). 

Compared to the iNKT -NK cell distance, iNKT cells exhibited a somewhat closer 

relationship to memory CD8+ T cells and certain memory CD4+ T cell, however, the latter 

were sorted using markers expressed at similar levels by iNKT cells (CD44+ and CD62Llow) 

and likely thus themselves contain a significant percentage of iNKT cells. The average 

Euclidian distance between iNKT and NK cells was only slightly larger than that separating 

iNKT cells from naive CD4+ and CD8+ T cells (Fig. 3, top panel, area iii). These relative 

relationships were maintained when the analysis was performed using all genes and not just 

the 15% most variable (data not shown). To determine whether the NK- iNKT relationship 

is dependent on the shared expression of NKRs, we recalculated the distance matrix after 

removing NKRs and related molecules from the data (see on-line methods). The outcome of 

the analysis remained essentially unchanged (Supplementary Fig. 5). Thus, the 

transcriptional relationship between NK and iNKT cells is not limited to the shared 

expression of NKRs. Together, these data support an unexpectedly substantial 

transcriptional relationship between iNKT and NK cells that is close in magnitude to that 

occurring between iNKT and naive T cells.

Shared and distinct iNKT cells programs

We next sought to identify the specific concordantly-regulated genes among iNKT, NK and 

T cells. For this purpose, we performed one-way analysis of variance (ANOVA) comparing 

the transcriptomes of peripheral steady-state iNKT cells, NK cells and naive and memory 

CD4+ and CD8+ T cells. Genes with low variability over the entire ImmGen dataset were 

excluded from the analysis. 20.2% (1192 genes) of the remaining genes were differentially 

expressed (Bonferroni corrected P value < 0.05) between the three groups. The modulated 

genes were further classified into 6 categories (see on-line methods): genes expressed 

similarly in NK and iNKT cells compared to T cells (A1 or A2, higher or lower than in T 

cells, respectively), genes expressed similarly in iNKT and T cells compared to NK cells (B1 

or B2, higher or lower than in NK cells, respectively), and genes expressed differentially in 

iNKT cells (C1 or C2, higher or lower than T and NK cells, respectively) (Fig. 4a). A 
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number of transcription factors, TCR signaling components, and cytokine or chemokine-

related molecules that are known to be expressed differentially by NK, iNKT, and T cells 

partitioned as expected in the ANOVA categories (Fig. 4b–d). For example, the transcription 

factor PLZF (Zbtb16, Fig. 4b), the chemokine receptor Cxcr6 (Fig. 4c), and a component of 

the high-affinity IL-12 receptor (Il12rb1) (Fig. 4d), all known to be expressed at higher 

levels in iNKT cells than in resting T or NK cells29,30,35,36, partitioned to category C1 

(higher in iNKT cells relative to NK and T cells). The transcription factor T-bet (Tbx21, Fig. 

4b) as well as Il12rb2 (Fig. 4d), known to be upregulated in NK and iNKT cells37, 

partitioned to category A1 (higher in iNKT and NK cells relative to T cells). TCR signaling 

components such as Cd3e, Itk, Plcg1, and Zap70 (Fig. 4c) segregated as anticipated to 

category B1 (higher in iNKT and T compared to NK, Fig. 4c, d). Functional biological 

process enrichment analysis using DAVID software38 of category A1 genes showed a 

statistically significant enrichment for effector functions including NK cell-mediated 

immunity, chemokine or cytokine responses, signal transduction, and cell motility (Table 1). 

Distinct biological processes were also enriched in the group of genes upregulated in iNKT 

cells as compared to NK and MHC-restricted T cells (category C1), and indicated a role for 

these genes in proliferation and survival, likely reflecting the uniquely activated phenotype 

of steady state iNKT cells (Table 2).

We found that a comparable number of genes were expressed similarly in iNKT and NK 

lineages (36.91%, 440 genes, categories A1 and A2) as in iNKT and T cells (43.88%, 523 

genes, categories A2 and B2). In addition, about one-fifth of the differentially expressed 

genes were regulated uniquely in iNKT cells (19.21%, 229 genes, categories C1 and C2) 

(Fig. 4a, Supplementary Table 15). Thus, in addition to expressing a distinctive genetic 

program, iNKT cells share a transcriptional program transcriptional with steady-state NK 

cells that is extensive and similar in magnitude to that shared between iNKT cells and other 

 T cells, consistent with the Euclidian distance analysis.

Thymic induction of NK- iNKT shared programs

To determine at what point during thymic development the transcriptional program shared 

by mature iNKT and NK cells is induced, we analyzed the expression patterns of ANOVA 

category A1 genes over the course of MHC-restricted T and iNKT cell differentiation by 

hierarchical clustering. Although approximately 75% of the shared, upregulated NK- iNKT 

gene program is expressed in early thymic precursors (ETP), these genes are then largely 

shut-down or downregulated by the DP thymocyte stage, and are not reactivated in 

differentiating CD4+ or CD8+ T cells. In contrast, differentiating iNKT cells upregulated 

these same genes, such that stage 3 thymic iNKT cells expressed more than 90% of the 

program (Fig. 5a). Consistent with this observation, the FC distribution of category A1 genes 

calculated by comparing the expression of each gene in developing iNKT cells and their DP 

progenitor showed an increasing shift towards higher FC values with iNKT maturation. All 

three distributions were significantly different from the baseline FC distribution for all 

expressed genes as determined by a Kolmogorov-Smirnov (K-S) test, with P values for 

enrichment of 3.97 × 10−15, 1.28 × 10−19 and 9.14 × 10−48 for stage 1, 2 and 3 iNKT cells 

respectively (Fig. 5b). In contrast, the FC distribution calculated by comparing naïve splenic 

CD4+ or CD8+ T cells to DP was not significantly different between the category A1 geneset 
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and all expressed genes (P = 0.79 and P = 0.65, respectively). Conversely to category A1 

genes, the genes that were significantly downregulated in mature NK and iNKT cells 

compared to T cells (ANOVA category A2) were not as strongly elicited in differentiating 

thymic iNKT cells as in CD4+ and CD8+ T cells (Supplementary Fig. 6). These data extend 

our earlier observation that iNKT cells acquire NKR expression at the end of development, 

and indicate that a large part of the transcriptional program iNKT cells share with NK cells 

is acquired late in thymic maturation.

iNKT cell programs expressed in  T cells

We next asked if other lymphocytes with innate features might also express this 

transcriptional program.  T cells can be categorized on the basis of their TCR V and V  

chain usage. The subset bearing the V2 chain tends to be IL-17 polarized, whereas the 

V 2− subsets (including V1.1+V 6.3+ and V 1.1+V 6.3− subsets) predominantly secrete 

TH1 or TH2 cytokines39. Distinct intraepithelial lymphocyte (IEL) CD8 +  T cell 

populations posses an effector phenotype similar to that of iNKT cells40,41.

In splenic  T cells negative for the activation marker CD44, NK- iNKT shared genes 

(ANOVA category A1) were expressed at relatively low levels, similar to those observed in 

resting T cells. A subset of these genes was upregulated in splenic CD44+ V 2+ and V 2− 

cells. Strikingly, we found that all tissue-resident IEL  T cells expressed a large cluster of 

category A1 genes at levels surpassing those of the reference NK and iNKT populations 

(Fig. 6a). FC distributions comparing the expression of category A1 genes in splenic or IEL 

 T cells and T cells revealed an enrichment of over-expressed genes (P value 4.67 × 10−41 

and 3.90 × 10−34, respectively) (Fig. 6b). IEL  T cells expressed an even smaller 

proportion of ANOVA category A2 genes (downregulated in NK and iNKT compared to T) 

than did iNKT cells, although most of these genes were expressed in splenic  T cells (data 

not shown). Although less prominently than for the shared NK- iNKT cell program 

(category A1) a portion of the genes upregulated in iNKT cells but not T or NK subsets 

(category C1) were also relatively highly expressed in  T cell subsets (Supplementary Fig. 

7a). Together, these data suggest that most of the gene program shared by NK and iNKT 

cells, as well as part of the program differentially upregulated in iNKT cells, is also utilized 

by populations of  T cells at steady state.

NK-iNKT shared program induction in CD8+ T cells

We next investigated the expression of the shared NK- iNKT transcriptional program in 

CD8+ effector T cells, a cell population that shares functional characteristics with NK and 

iNKT cells, including the expression of certain NKRs42. We examined the expression of 

ANOVA categories A1 and A2 in CD8+ T cells from the spleen of ovalbumin (OVA)-

reactive  TCR transgenic (OT-I) mice following infection with Listeria monocytogenes 

expressing OVA. Only a small fraction of ANOVA category A1 genes became upregulated 

in effector CD8+ T cells at 12, 24, and 48 h following Listeria infection. By day 6, however, 

the NK- iNKT shared program was dramatically upregulated, with a FC distribution 

significantly enriched for higher expression, and this genetic program was maintained in 

CD8+ memory T cells as late as day 100 following infection (Fig. 7a, b). In contrast, only a 

limited portion of category C1 genes (differentially expressed by iNKT cells) followed a 
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similar pattern in effector CD8+ T cell populations (Supplementary Fig. 7b). The genes 

downregulated in NK and iNKT cells compared to T cells (ANOVA category A2, which by 

definition are widely expressed in naive OT-I transgenic CD8+ T cells), were partially 

repressed following infection (Supplementary Fig. 8). Similar results were obtained when 

the expression of the NK- iNKT shared transcriptional programs were examined in CD8+ T 

cells from OT-I transgenic mice infected with OVA-expressing vesicular stomatitis virus 

(VSV) (Supplementary Fig. 9). We found that the homologous human genes comprising the 

NK- iNKT shared program (ANOVA category A1) were also expressed at significantly 

higher levels in human peripheral blood effector memory CD8+ T cell populations as 

compared to naive CD8+ T cells43 (Fig. 7c, d). Thus, a large proportion of the genetic 

program shared by NK and iNKT cells is elicited in effector  T cells, but only several 

days following their activation.

Discussion

iNKT cells do not fit the classical paradigm of adaptive T cell immunity. Indeed, innate 

features are at the core their physiological functions3,14. The transcriptional basis for these 

features, however, remains incompletely defined.

The transcriptional programs and regulatory factors we found to be operating during iNKT 

cell maturation were consistent with previous reports, and included Zbtb16 (PLZF), Vdr, 

Tbx21 (Tbet), components of the NF-κB and Ras-MapK pathways, and NKRs4,37,44,45. By 

comparing developing iNKT cells to differentiating MHC-restricted T cells, we define 

transcriptional programs expressed specifically by stage 1 iNKT cells shortly after the DP 

branch point. We thus highlight a large number genes not previously known to affect iNKT 

cell biology but likely modulating iNKT cell thymic maturation specifically.

A number of genes reported to be involved in iNKT cell development were not expressed in 

an iNKT cell specific-manner. For instance, NF-κB and Ras/MapK pathway members such 

as NFkb1, RelB, Ras/MapK and Egr2 were upregulated in both iNKT and non-iNKT 

thymocyte populations4 (data not shown). Other genes known to affect iNKT cells 

ontogeny, Bcl11b46 and the chromatin modifier Med147 for example, exhibited little or no 

transcriptional variation over the course of iNKT cell differentiation. The functional 

regulation of these and other genes not detected in our analyses may thus be controlled at 

post-transcriptional levels.

Mature iNKT cells share several innate functional features with NK cells, developmentally 

distant relatives. We hypothesized that NK and iNKT cells shared a broader transcriptional 

program than is currently appreciated. Our analyses revealed that the transcriptional patterns 

iNKT cells share with NK cells make up nearly as large a part of the iNKT transcriptome as 

those shared with MHC-restricted T cells. Further, we found that the NK- iNKT cell shared 

program was also active in steady-state  T cells subsets similarly poised for rapid, innate-

like responsiveness. The NK- iNKT program can in addition be induced in adaptive  T 

cells, but only days following antigen-specific stimulation. These data suggest that the NK- 

iNKT shared program represents a core effector program operational in lymphocytes of 
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distinct lineages, consistent with the many functional capabilities iNKT, NK and activated 

MHC-restricted T cells have in common.

The factors that regulate expression of this shared effector program remain to be fully 

defined. Nevertheless, our data provides several leads. Acquired largely at the end of thymic 

iNKT cell maturation, the shared program mirrors the cells’  acquisition of NKRs. NKR 

expression is driven by the transcription factor T-bet both in NK and iNKT cells37. Thus, it 

is likely that T-bet, which we found to be among the genes significantly upregulated in both 

NK and iNKT compared to resting T cells, plays an important role in eliciting and 

maintaining at least part of the shared effector lymphocyte program. T-bet-deficient iNKT 

cells express reduced mRNA and protein levels of IFN-, granzyme B, Fas ligand, CCR5, 

and CD38, all molecules that are part of the shared program44. IL-15, recently reported to 

act upstream of T-bet in maturing iNKT cells45, is also likely to be involved in iNKT cell 

acquisition of this program. Furthermore, IL-15 and T-bet are important for regulating CD8+ 

effector T cell responses48 as well as for the homeostasis of IEL  T cells49. Thus, IL-15 

and T-bet may play an important role in inducing the expression of the shared effector 

program in several cell types.

We also highlight a number of previously unappreciated transcriptional regulators exhibiting 

similar expression patterns in NK and iNKT cells, and that may help regulate the core 

effector program in innate lymphocytes. For example, the transcription factor Bhlhe40, a 

circadian rhythm regulator50 possessing immune-modulatory functions in CD4+ T cells51,52, 

as well as Smad3, a transcription factor important for tuning TGF--mediated lymphocyte 

activation, were upregulated in both NK and iNKT cells compared to resting T cells. Also, a 

number of factors were downregulated in NK and iNKT cells. Among these genes were Lef1 

and Tcf7, transcription factors downstream of the Wnt signaling pathway that are important 

for the establishment and maintenance of T cell identity53. Wnt signaling, which is typically 

repressed upon T cell activation54,55. The relatively low expression of Tcf7 and Lef1 in NK 

and iNKT cells during development is consistent with the acquisition their terminally 

differentiated effector phenotype at steady state.

Approximately 20% of the significantly differentially expressed genes between NK, iNKT, 

and T cells exhibited transcriptional patterns specific to iNKT cells. As expected, PLZF 

(Zbtb16) and Gata-3 were among these factors. The genes preferentially upregulated in 

iNKT cells (category C1 genes) were enriched for cellular activation and survival programs. 

For instance, several AP-1 family members (Jun, Junb, Jund, Fos, Fosb and Cebpb) 

normally induced in cells only after activation, were expressed relatively highly in iNKT 

cells. Constitutive expression of AP-1 transcription factors by iNKT cells is consistent with 

their poised effector phenotype.

Together, these data offer a new view of iNKT cells and their relationships to other 

lymphocyte lineages. Using the Immunological Genome consortium database, we have 

uncovered gene expression programs that both link to and differentiate iNKT cells from 

other innate and adaptive lymphocytes. Our data highlight extensive genetic modules that 

are shared with NK cells and other innate-like T cells, and that are also elicited several days 

following activation in adaptive T cells. By defining both distinct and shared transcriptional 
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programs in iNKT cells, our data opens avenues for future research and brings into clearer 

focus how lymphocyte populations that differ markedly in their ontogeny can ultimately 

carry out similar effector functions through modular expression of similar transcriptional 

programs.

Online Methods

Mice

6 week old C57BL/6 male mice shipped from Jackson Laboratories one week prior to organ 

harvest were used. Mice were maintained under specific pathogen free conditions. All 

studies were approved by the Animal Care and Use Committee of the Dana-Farber Cancer 

Institute.

Antibodies

Anti-CD19 (MB19-1), anti-B220 (RA3–6B2), anti-Ter119 (TER119), anti-CD11b (M1/70), 

anti-CD11c (N418), anti-Ly6G/Gr1 (A18), anti-CD8 (53/6.7), anti-TCR (H58–597), anti-

NK1.1 (PK136), anti-CD44 (IM7), anti-CD4 (GK1.5), anti-CD45 (102), anti-CD3 (145–

2C11), anti-Ly49e,f (CM4), anti-NKG2D (CX5), anti-NKG2A (16a11), anti-2B4 

(ebio244F4), and anti-CD16,32 (2.4G2) were from eBioscience. Anti-Ly49a (A1) and anti-

Ly49c,1 (5F6) were from BD biosciences. CD1d-tetramers loaded with PBS-57 (an -

galactosylceramide analog) were provided by the NIH tetramer facility.

Cell isolation, microarray analysis and subset nomenclature

All immune cells purification were performed in strict adherence to the ImmGen standard 

Operating Procedure guidelines (available at www.immgen.org). Further details on thymic, 

NK cell,  T cell, and CD8+ T cell populations used for comparison to iNKT cells can be 

found at the ImmGen website. For iNKT cells, thymocytes, splenocytes, liver and lung 

mononuclear cells were isolated from 5–10 mice per sample. Thymocytes were 

disaggregated, blocked with anti-CD16 and CD32 (clone 2.4G2), then stained with 

fluorophore-labeled antibodies for depletion of non- iNKT cell populations, and separated 

with anti-fluorophore magnetic beads (Miltenyi). Spleens were disaggregated, treated with 

ACK lysis buffer (Lonza) to remove red blood cells, and then depleted of non- iNKT cells as 

above. Lungs and livers were harvested after perfusion with cold PBS and mechanically 

homogenized. Lungs were digested for 15 minutes at 37° C in 7 U/ml of Liberase III 

enzyme (Roche) in DMEM, then filtered and washed. Livers were homogenized and liver 

mononuclear cells (LMNC) were isolated by Ficoll density gradient centrifugation. iNKT 

cell-enriched thymocytes, splenocytes, LMNCs and lung cells were stained for cell surface 

markers (see www.immgen.org for complete staining procedure including gating strategy) 

and double sorted directly into Trizol (Invitrogen) at a purity of >99%. By staining 

thymocytes from CD1d-deficient mice that lack iNKT cells, a false positive rate of 2.7 ± 

0.9% was estimated in the case of CD44− NK1.1− (Stage 1) iNKT cells, the rarest thymic 

subset. Contamination was negligible for other iNKT cell populations. Two to four 

replicates were obtained for each sample using a FACSAria, with the exception of the CD4− 

iNKT subset from the lung, for which only a single replicate passed quality control (see 

below). RNA extraction, microarray hybridization (Affymetrix MoGene 1.0 ST array) and 
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data processing were performed at the ImmGen processing center. For further details, please 

see Supplementary Table 16 (subset nomenclature key), the Data Generation and Quality 

Control pipeline documentation, the ImmGen Quality Control Statistics or the ImmGen 

website (www.immgen.org). Non-ImmGen human and mouse datasets were downloaded 

from NCBI Geo datasets43,56. Human homologs of mouse genes were determined using 

NCBI HomoloGene.

Data analysis and visualization

Data from the March 2011 ImmGen release (802 arrays with 22,268 probesets) were used. 

Probesets associated with the same gene symbol were consolidated by selecting the probeset 

with the highest mean expression overall. For heatmaps, data were log2-transformed and a 

relative color scale with row centering (subtraction of the mean) and normalization was 

used. Heatmaps were produced by using the HeatmapViewer module of GenePattern 

(www.broadinstitute.org/cancer/software/genepattern/). When indicated, Pearson correlation 

with pair-wise complete linkage was applied to rows for clustering analysis. Volcano plots 

were produced by using the Multiplot module of GenePattern.

For K-means clustering analysis, genes were pre-filtered for mean expression value ≥ 120 

(cut-off above which genes have a 95% chance of expression) and for FC>2 between any 

two subsets analyzed. Clustering was performed using the ExpressCluster application (Scott 

Davis, Harvard Medical School, Boston MA – application and documentation available at 

http://cbdm.hms.harvard.edu) with K=10.

For Euclidian distance matrices, the 15% most variable genes were identified using the 

PopulationDistances PCA application (Scott Davis), which filters probes based on a 

variation of ANOVA analysis using the geometric standard deviation of populations to 

weight genes that vary in multiple populations. The selected genes were log2-transformed, 

filtered for probes with a mean expression value ≥ 120, and mean centered prior to 

visualization. Activating and inhibitory NKRs, adaptors and signaling partners (Klra1, 

Klra2, Klra3, Klra5, Klra6, Klra8, Klra9, Klra10, Klra17, Klrb1a, Klrb1b, Klrb1c, Klrb1f, 

Klrc1, Klrc2, Klrc3, Klrd1, Klre1, Klri1, Klri2, Klrk1, Klrg2, Ncr1, Cd244, Fcer1g, Tyrobp 

and Hcst) were present in the initial gene list used in the first analysis (Fig. 3, top panel) and 

were manually removed as indicated for the second analysis (Fig. 3, bottom panel). Klra1, 

Klra3, Klra5, Klra6, Klra8, Klra9, Klra10, Klrb1a, Klrb1b, Klrb1c, Klrb1f, Klrc1, Klrc2, 

Klrc3, Klrd1, Klre1, Klri1, Klri2, Klrk1, Ncr1, Cd244, Fcer1g, Tyrobp (but not Klra2, 

Klra17, Klrg2 or Hcst) were present after filtering for 15% most variable gene list and were 

contributed to the first, but not the second Euclidian distance analysis.

For ANOVA, data were log2-transformed, low-variability genes with a standard deviation of 

≤ 0.5 across all ImmGen samples were removed and only genes with expression values ≥ 

120 in 2 or more arrays were considered, leaving 5,900 genes. The ANOVA was performed 

using the Matlab (MathWorks) function “ anova1”  to compare iNKT, NK and T cell 

populations Bonferroni correction was applied to the resulting list of P values, and 1192 

genes passed the ANOVA (p < 0.05 out of 5,900). A secondary test was used to determine 

which of the three populations significantly differed from the other two, as indicated by the 

“ multcompare”  function of Matlab. Based on the results of this analysis, the 1,192 genes 
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were then separated into 14 gene categories. By comparing the average expression levels in 

NK, iNKT, and T cells for each gene, these categories were then sorted into 6 groups of 

genes: genes expressed most similarly by NK and iNKT cells (either A1, up- or A2, 

downregulated compared to T), genes expressed most similarly in T and iNKT (either B1, 

up- or B2, downregulated compared to NK) and genes expressed uniquely in iNKT (either 

C1, up- or C2, downregulated compared to NK and T). Functional geneset enrichment 

analysis was performed using DAVID software (Version 6.7, National Institutes of Health, 

National Institute for Allergy and Infectious Diseases)57. Panther biological processes38 are 

shown in Tables 1 and 2. P values calculated by DAVID represent a modified Fisher Exact 

test. Biological processes with P values less than 0.01 are shown.

For estimation of the significance of enrichment for the FC distributions associated with the 

heatmaps in Figs. 5–7, Kolmogorov-Smirnov P values were calculated with JMP (SAS 

Institute) comparing the selected geneset to all genes meeting the criteria for expression 

(>120) in the samples tested.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank the NIH tetramer facility for their ongoing support. We thank M. Painter, C. Benoist, S. Raychaudhuri, X. 
Hu, J. Erricson, S. Davis, H. Li, T. Kreslavsky, L. Lanier and A. Goldrath for advice, discussions and technical 
assistance. The work was supported by R01AI063428 to M.B.B., T32AI007306 to P.J.B, and R24AI072073 to the 
ImmGen consortium.

References

1. Heng TS, Painter MW, Immunological Genome Project C. The Immunological Genome Project: 
networks of gene expression in immune cells. Nat Immunol. 2008; 9:1091–1094. [PubMed: 
18800157] 

2. Cohen NR, Garg S, Brenner MB. Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in 
Microbial Immunity. Adv Immunol. 2009; 102:1–94. [PubMed: 19477319] 

3. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007; 25:297–
336. [PubMed: 17150027] 

4. Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol. 2010; 11:197–
206. [PubMed: 20139988] 

5. Coquet JM, et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-
producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci U S A. 2008; 105:11287–11292. 
[PubMed: 18685112] 

6. Cerundolo V, Silk JD, Masri SH, Salio M. Harnessing invariant NKT cells in vaccination strategies. 
Nat Rev Immunol. 2009; 9:28–38. [PubMed: 19079136] 

7. Makino Y, Kanno R, Ito T, Higashino K, Taniguchi M. Predominant expression of invariant V alpha 
14+ TCR alpha chain in NK1.1+ T cell populations. Int Immunol. 1995; 7:1157–1161. [PubMed: 
8527413] 

8. Bendelac A. Mouse NK1+ T cells. Curr Opin Immunol. 1995; 7:367–374. [PubMed: 7546402] 

9. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L. NKT cells: what's in a name? 
Nat Rev Immunol. 2004; 4:231–237. [PubMed: 15039760] 

10. Gregoire C, et al. The trafficking of natural killer cells. Immunol Rev. 2007; 220:169–182. 
[PubMed: 17979846] 

Cohen et al. Page 11

Nat Immunol. Author manuscript; available in PMC 2013 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. Matsuda JL, et al. Tracking the response of natural killer T cells to a glycolipid antigen using 
CD1d tetramers. J Exp Med. 2000; 192:741–754. [PubMed: 10974039] 

12. Cooper MA, et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer 
cells. Blood. 2002; 100:3633–3638. [PubMed: 12393617] 

13. Matsuda JL, et al. Homeostasis of V alpha 14i NKT cells. Nat Immunol. 2002; 3:966–974. 
[PubMed: 12244311] 

14. Brigl M, Brenner MB. How invariant natural killer T cells respond to infection by recognizing 
microbial or endogenous lipid antigens. Semin Immunol. 2010; 22:79–86. [PubMed: 19948416] 

15. Lanier LL. Evolutionary struggles between NK cells and viruses. Nat Rev Immunol. 2008; 8:259–
268. [PubMed: 18340344] 

16. Kuylenstierna C, et al. NKG2D performs two functions in invariant NKT cells: direct TCR-
independent activation of NK-like cytolysis and co-stimulation of activation by CD1d. Eur J 
Immunol. 2011; 41:1913–1923. [PubMed: 21590763] 

17. Kawamura T, et al. NKG2A inhibits invariant NKT cell activation in hepatic injury. J Immunol. 
2009; 182:250–258. [PubMed: 19109156] 

18. Maeda M, Lohwasser S, Yamamura T, Takei F. Regulation of NKT cells by Ly49: analysis of 
primary NKT cells and generation of NKT cell line. J Immunol. 2001; 167:4180–4186. [PubMed: 
11591738] 

19. Ota T, et al. IFN-gamma-mediated negative feedback regulation of NKT-cell function by CD94/
NKG2. Blood. 2005; 106:184–192. [PubMed: 15746081] 

20. Brennan PJ, et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial 
danger signals. Nat Immunol. 2011; 12:1202–1211. [PubMed: 22037601] 

21. Paget C, et al. Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells 
requires type I interferon and charged glycosphingolipids. Immunity. 2007; 27:597–609. 
[PubMed: 17950005] 

22. Salio M, et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-
presenting cell activation. Proc Natl Acad Sci U S A. 2007; 104:20490–20495. [PubMed: 
18077358] 

23. Reschner A, Hubert P, Delvenne P, Boniver J, Jacobs N. Innate lymphocyte and dendritic cell 
cross-talk: a key factor in the regulation of the immune response. Clin Exp Immunol. 2008; 
152:219–226. [PubMed: 18336590] 

24. Andrews DM, Scalzo AA, Yokoyama WM, Smyth MJ, Degli-Esposti MA. Functional interactions 
between dendritic cells and NK cells during viral infection. Nat Immunol. 2003; 4:175–181. 
[PubMed: 12496964] 

25. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB. Mechanism of CD1d-restricted natural killer 
T cell activation during microbial infection. Nat Immunol. 2003; 4:1230–1237. [PubMed: 
14578883] 

26. Fernandez NC, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate 
anti-tumor immune responses in vivo. Nat Med. 1999; 5:405–411. [PubMed: 10202929] 

27. Vincent MS, et al. CD1-dependent dendritic cell instruction. Nat Immunol. 2002; 3:1163–1168. 
[PubMed: 12415264] 

28. Walzer T, Dalod M, Vivier E, Zitvogel L. Natural killer cell-dendritic cell crosstalk in the initiation 
of immune responses. Expert Opin Biol Ther. 2005; 5(Suppl 1):S49–S59. [PubMed: 16187940] 

29. Savage AK, et al. The transcription factor PLZF directs the effector program of the NKT cell 
lineage. Immunity. 2008; 29:391–403. [PubMed: 18703361] 

30. Kovalovsky D, et al. The BTB-zinc finger transcriptional regulator PLZF controls the development 
of invariant natural killer T cell effector functions. Nat Immunol. 2008; 9:1055–1064. [PubMed: 
18660811] 

31. Yu S, Cantorna MT. The vitamin D receptor is required for iNKT cell development. Proc Natl 
Acad Sci U S A. 2008; 105:5207–5212. [PubMed: 18364394] 

32. Gumperz JE, Miyake S, Yamamura T, Brenner MB. Functionally distinct subsets of CD1d-
restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med. 2002; 195:625–
636. [PubMed: 11877485] 

Cohen et al. Page 12

Nat Immunol. Author manuscript; available in PMC 2013 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



33. Watarai H, et al. Development and function of invariant natural killer T cells producing T(h)2- and 
T(h)17-cytokines. PLoS Biol. 2012; 10:e1001255. [PubMed: 22346732] 

34. Crowe NY, et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp 
Med. 2005; 202:1279–1288. [PubMed: 16275765] 

35. Brigl M, et al. Innate and cytokine-driven signals, rather than microbial antigens, dominate in 
natural killer T cell activation during microbial infection. J Exp Med. 2011; 208:1163–1177. 
[PubMed: 21555485] 

36. Johnston B, Kim CH, Soler D, Emoto M, Butcher EC. Differential Chemokine Responses and 
Homing Patterns of Murine TCRalphabeta NKT Cell Subsets. J Immunol. 2003; 171:2960–2969. 
[PubMed: 12960320] 

37. Townsend MJ, et al. T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i 
NKT cells. Immunity. 2004; 20:477–494. [PubMed: 15084276] 

38. Thomas PD, et al. PANTHER: a browsable database of gene products organized by biological 
function, using curated protein family and subfamily classification. Nucleic Acids Res. 2003; 
31:334–341. [PubMed: 12520017] 

39. O'Brien RL, Born WK. gammadelta T cell subsets: a link between TCR and function? Semin 
Immunol. 2010; 22:193–198. [PubMed: 20451408] 

40. Fahrer AM, et al. Attributes of gammadelta intraepithelial lymphocytes as suggested by their 
transcriptional profile. Proc Natl Acad Sci U S A. 2001; 98:10261–10266. [PubMed: 11526237] 

41. Shires J, Theodoridis E, Hayday AC. Biological insights into TCRgammadelta+ and TCRalphabeta
+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity. 
2001; 15:419–434. [PubMed: 11567632] 

42. Vivier E, Anfossi N. Inhibitory NK-cell receptors on T cells: witness of the past, actors of the 
future. Nat Rev Immunol. 2004; 4:190–198. [PubMed: 15039756] 

43. Gattinoni L, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011; 
17:1290–1297. [PubMed: 21926977] 

44. Matsuda JL, et al. T-bet concomitantly controls migration, survival, and effector functions during 
the development of Valpha14i NKT cells. Blood. 2006; 107:2797–2805. [PubMed: 16357323] 

45. Gordy LE, et al. IL-15 regulates homeostasis and terminal maturation of NKT cells. J Immunol. 
2011; 187:6335–6345. [PubMed: 22084435] 

46. Kastner P, et al. Bcl11b represses a mature T-cell gene expression program in immature 
CD4(+)CD8(+) thymocytes. Eur J Immunol. 2010; 40:2143–2154. [PubMed: 20544728] 

47. Yue X, Izcue A, Borggrefe T. Essential role of Mediator subunit Med1 in invariant natural killer T-
cell development. Proc Natl Acad Sci U S A. 2011; 108:17105–17110. [PubMed: 21949387] 

48. Sullivan BM, Juedes A, Szabo SJ, von Herrath M, Glimcher LH. Antigen-driven effector CD8 T 
cell function regulated by T-bet. Proc Natl Acad Sci U S A. 2003; 100:15818–15823. [PubMed: 
14673093] 

49. Inagaki-Ohara K, Nishimura H, Mitani A, Yoshikai Y. Interleukin-15 preferentially promotes the 
growth of intestinal intraepithelial lymphocytes bearing gamma delta T cell receptor in mice. Eur J 
Immunol. 1997; 27:2885–2891. [PubMed: 9394814] 

50. Honma S, et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature. 2002; 
419:841–844. [PubMed: 12397359] 

51. Miyazaki K, et al. The role of the basic helix-loop-helix transcription factor Dec1 in the regulatory 
T cells. J Immunol. 2010; 185:7330–7339. [PubMed: 21057086] 

52. Sun H, Lu B, Li RQ, Flavell RA, Taneja R. Defective T cell activation and autoimmune disorder in 
Stra13-deficient mice. Nat Immunol. 2001; 2:1040–1047. [PubMed: 11668339] 

53. Weber BN, et al. A critical role for TCF-1 in T-lineage specification and differentiation. Nature. 
2011; 476:63–68. [PubMed: 21814277] 

54. Willinger T, et al. Human naive CD8 T cells down-regulate expression of the WNT pathway 
transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) 
following antigen encounter in vitro and in vivo. J Immunol. 2006; 176:1439–1446. [PubMed: 
16424171] 

Cohen et al. Page 13

Nat Immunol. Author manuscript; available in PMC 2013 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



55. Gattinoni L, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory 
stem cells. Nat Med. 2009; 15:808–813. [PubMed: 19525962] 

56. Marshall HD, et al. Differential expression of Ly6C and T-bet distinguish effector and memory 
Th1 CD4(+) cell properties during viral infection. Immunity. 2011; 35:633–646. [PubMed: 
22018471] 

57. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists 
using DAVID bioinformatics resources. Nat Protoc. 2009; 4:44–57. [PubMed: 19131956] 

Cohen et al. Page 14

Nat Immunol. Author manuscript; available in PMC 2013 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
iNKT cells upregulate NKRs at the end of thymic differentiation. (a) Flow cytometric 

identification of thymic iNKT cells. (b) Number of genes differentially expressed during 

iNKT cell developmental transitions. (c) Genes differentially expressed between DP 

thymocytes and stage 1 (top), stage 1 and stage 2 (middle), and stage 2 and stage 3 iNKT 

cells (bottom). Genes upregulated are highlighted in red or blue, respectively. See 

Supplementary Tables 1–6 for complete lists. (d) Genes differentially expressed in stage 1 

iNKT cells versus DP thymocytes. Colored highlights indicate genes differentially regulated 
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in iNKT but not in CD4+8int compared to DP thymocytes. See Supplementary Tables 7 and 

8 for complete lists. For b-d, only genes with expression above the detection level one or 

more subsets and a coefficient of variation (CV) < 0.5 in all subsets were considered. The 

differential expression threshold used was FC > 2. (e) Expression of NKRs in differentiating 

thymocytes (see Supplementary Table 16 for key to subset nomenclature). Values were 

log2-transformed, row centered and locally color scaled. (f) NKR surface expression as 

determined by flow cytometry. Bars, mean percentage-positive ± s.e.m., n=3 mice. Data is 

representative of at least two independent experiments. (g) Expression of an NKR-

containing gene cluster derived from a Euclidian distance-based K-means clustering analysis 

(mean correlation, 0.958). Genes were pre-filtered for expression and for FC > 2 between 

any 2 subsets, and data was log2-transformed. Klra3, 5, 6, 9, 10, Klrb1b, c, f, Klrc1, 2, 3, 

Klrd1, Klri2 and Klrk1 are labeled in red.
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Fig. 2. 
Expression of NKRs in peripheral CD4+ and CD4− iNKT cells. (a) Top, differential gene 

expression between CD4+ and CD4iNKT cells from the spleen; bottom, differential gene 

expression between CD4+ and CD4− iNKT cells from the liver. Genes up- or downregulated 

with FC > 2 in CD4− compared to CD4+ subsets are highlighted in red or blue, respectively. 

Only genes with expression values above the detection level in at least one subset and a CV 

< 0.5 in all subsets are displayed. (b) Flow cytometric quantification of NKRs on spleen and 

liver CD4+ and CD4− iNKT cells. Bars represent mean percentage-positive for surface 
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expression ± s.e.m., n=3 mice. Data is representative of at least two independent 

experiments. (c) NKR expression in peripheral MHC-restricted T and iNKT cell subsets. 

Values were log2-transformed, gene row centered and local color scaling was used. See 

Supplementary Table 16 for key to subset nomenclature.
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Fig. 3. 
The global transcriptional relationship between NK and iNKT cells is similar in magnitude 

to the relationship between T and iNKT cells. Euclidian distance matrix calculated using the 

15% most variable probes. Only genes with mean expression values above 120 were 

included in these analyses, and data was log2 transformed and mean centered. Numbers 

represent average Euclidian distances between intersecting subsets. Note that the matrix is 

symmetrical along the indicated diagonal. Areas of interest are marked with lowercase 

Roman numerals.
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Fig. 4. 
Characterization of shared and differential gene expression among iNKT, NK, and T cells. 

One-way ANOVA was performed to compare gene expression in iNKT, NK, and T cell 

populations. Differentially expressed genes were separated into six categories depending on 

common patterns in 2 of the 3 subsets. Genes up- (A1) or down- (A2) regulated in NK and 

iNKT compared to T cells; genes up- (B1) or down- (B2) regulated in iNKT and T compared 

to NK cells; genes up- (C1) or down- (C2) regulated in iNKT compared to T or NK cells. (a) 

Left, heatmap of genes expressed differentially in iNKT, NK, and T cells for the indicated 
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cell subsets, separated according to category; right, proportion of differentially expressed 

genes in each category. (b-d) Expression of ANOVA category genes in relevant manually 

selected functional gene groups (see methods). Genes reported in the literature to be highly 

expressed in each category shown in underlined bold. In all heatmaps, rows are mean-

centered and normalized, and local scaling is used. See Supplementary Table 16 for key to 

subset nomenclature.
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Fig. 5. 
Transcriptional programs shared between NK and iNKT cells are acquired during thymic 

iNKT cell maturation. (a) Top, relative expression of genes significantly upregulated in 

peripheral NK and iNKT cells (ANOVA category A1) over the course of thymic T and 

iNKT cell maturation. Genes were ordered by hierarchical clustering using Pearson 

correlation. Rows are mean-centered and normalized, and local scaling is used. Bottom, 

percentages of genes exceeding the threshold for expression over the course of thymic 

maturation. T cell populations are represented in the same order as in the heatmaps. (b) FC 

distribution of category A1 genes in stage 1, 2 and 3 iNKT cells compared to DP thymocytes 

with individual genes displayed in rank-order along the y-axis. P values represent 
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significance of K-S test comparing the FC distribution of the ANOVA category A1 geneset 

to that of all expressed genes. See Supplementary Table 16 for key to subset nomenclature.
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Fig. 6. 
Activated splenic  T cells and IEL  T cells express NK- iNKT shared gene programs. 

(a) Relative expression of genes significantly upregulated in peripheral NK and iNKT 

compared to T cells (ANOVA category A1) in the splenic and IEL  T cell subsets 

indicated. Averaged values for the ANOVA subsets (iNKT, NKT and T) are displayed for 

comparison. Genes are ordered by hierarchical clustering using Pearson correlation. Rows 

are mean-centered, normalized and local color scaling is used. (b) ANOVA category A1 

gene FC distributions for averaged splenic and IEL  T cell subsets compared to the 
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averaged T cell subset displayed with individual genes displayed in rank-order along the y-

axis. P values represent significance of K-S test comparing the distribution of the ANOVA 

category A1 geneset to that of all expressed genes. See Supplementary Table 16 for key to 

subset nomenclature.
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Fig. 7. 
NK-iNKT shared gene programs are induced in activated CD8+ T cells. (a) Relative 

expression of genes significantly upregulated in peripheral NK and iNKT cells (ANOVA 

category A1) in antigen-specific CD8+ T cells over the course of Listeria-OVA infection. 

See Supplementary Table 16 for key to subset nomenclature. (b) ANOVA category A1 gene 

FC distributions for activated CD8+ T cells compared to the naive control with individual 

genes displayed in rank-order along the y-axis. (c) Relative expression of the human gene 

homologs from ANOVA category A1 in human peripheral blood CD8+ T cell subsets from 
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different donors43. (d) FC distributions for human memory CD8+ T cells compared to the 

naive control, using human homologs of the ANOVA category A1 geneset. For all 

heatmaps, genes were ordered by hierarchical clustering using Pearson correlation. Rows are 

mean-centered and normalized, and relative scaling is used. For FC distribution plots, P 

values represent significance of K-S test comparing the distribution of the ANOVA category 

A1 geneset to that of all expressed genes. Nve., naïve; Ctr. Mem., central memory; Eff. 

Mem., effector memory.
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Table 1

Functional pathway enrichment for ANOVA category A1 genes

Biological process Genes present Fold-
enrichment

P value

BP00157:
Natural killer cell
mediated immunity

Klrc2, Klrc3, Ifng, Klrb1f,
Klrk1, Klrb1c, Klrc1 13.70 1.11 × 10−5

BP00255:
Cytokine/chemokine
mediated immunity

Ccrl2, Ccr5, Ifng, Ccr2, Xcl1,
Ccl5 7.31 1.33 × 10−3

BP00107:
Cytokine and
chemokine mediated
signaling pathway

Ccrl2, Il12rb2, Ccr5, Ifng,
Ccr2, Inpp5d, Xcl1, Ccl5 4.31 2.49 × 10−3

BP00287:
Cell motility

Ccrl2, Coro2a, Dok2, Ccr5,
Ccr2, Anxa1, Abi2, Dock5,
Diap1

3.68 2.98 × 10−3

BP00148:
Immunity and defense

F2rl2, Klrc2, Klrc3, Fgr,
Cysltr2, Adora2a, Tbx21,
Klrk1, Ccl5, Ccrl2, Cd97,
Il12rb2, Ifng, Irak2, Klf6,
Il18rap, Lgals3, Gzmb,
Sh2d2a, Ccr5, Ccr2, Klrb1f,
Xcl1, Klrb1c, Klrc1, Sema4a

2.11 3.57 × 10−4

BP00102:
Signal transduction

F2rl2, Klrc2, S100a6, Gna15,
Klrc3, Fgr, Adora2a, Cysltr2,
Gpr65, Klrk1, Abi2, Itgb2,
Ccl5, Prkx, Il12rb2, Cd97,
Ccrl2, Coro2a, Zfp36l2,
Plcb3, Ifng, Rhob, Fgl2,
Rhoc, Fasl, Inpp5d, Ptprj,
Irak2, Abr, Rxra, Anxa1,
Ntng2, Smad3, Gem, Dock5,
Arhgap26, Dusp5, Dok2,
Dusp2, Ccr5, Rgs2, Rgs3,
Ccr2, Chn2, Xcl1, Sema4a,
Klrc1

1.55 6.50 × 10−4
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Table 2

Functional pathway enrichment for ANOVA category C1 genes

Biological process Genes present Fold-
enrichment

P value

BP00116:
JNK cascade

Vav3, Dusp1, Jun,
Jund, Junb, Cxcl10 14.49 5.45 × 10−5

BP00265:
Oncogene

Fos, Vav3, Lmo4, Jun,
Jund, Etv5, Junb 10.35 5.53 × 10−5

BP00263:
Inhibition of apoptosis

Il4, bcl2a1d, bcl2a1c,
cebpb, socs2, bcl2a1b,
bcl2a1a

8.11 2.13 × 10−4

BP00179:
Apoptosis

Il4, bcl2a1d, bcl2a1c,
cebpb, socs2, bcl2a1b,
bcl2a1a, tnfsf14, nfkbia,
gadd45b, emp1

3.25 1.88 × 10−3

BP00281:
Oncogenesis

Fos, vav3, lmo4, jun,
jund, fam129a, etv5,
junb, emp1

3.13 7.59 × 10−3

BP00111:
Intracellular signaling
cascade

Il4, cap2, vav3, socs2,
rab4a, nfkbia, junb,
cxcl10, plk3, dusp1, jun,
jund, gadd45b, tbkbp1,
dusp6, rab27a

2.78 5.12 × 10−4

BP00040:
mRNA transcription

Dtx4, cebpb, lmo4,
nfkbia, fosb, arntl,
zbtb16, rora, junb, hic1,
fos, npas2, nr1d1,
gata3, jun, jund,
dennd4c, thoc4, gfi1,
rbpj, etv5, klf4

1.76 9.97 × 10−3
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