5 research outputs found

    Coronin 1C promotes triple-negative breast cancer invasiveness through regulation of MT1-MMP traffic and invadopodia function

    Get PDF
    Membrane type 1-matrix metalloproteinase (MT1-MMP), a membrane-tethered protease, is key for matrix breakdown during cancer invasion and metastasis. Assembly of branched actin networks by the Arp2/3 complex is required for MT1-MMP traffic and formation of matrix-degradative invadopodia. Contrasting with the well-established role of actin filament branching factor cortactin in invadopodia function during cancer cell invasion, the contribution of coronin-family debranching factors to invadopodia-based matrix remodeling is not known. Here, we investigated the contribution of coronin 1C to the invasive potential of breast cancer cells. We report that expression of coronin 1C is elevated in invasive human breast cancers, correlates positively with MT1-MMP expression in relation with increased metastatic risk and is a new independent prognostic factor in breast cancer. We provide evidence that, akin to cortactin, coronin 1C is required for invadopodia formation and matrix degradation by breast cancer cells lines and for 3D collagen invasion by multicellular spheroids. Using intravital imaging of orthotopic human breast tumor xenografts, we find that coronin 1C accumulates in structures forming in association with collagen fibrils in the tumor microenvironment. Moreover, we establish the role of coronin 1C in the regulation of positioning and trafficking of MT1-MMP-positive endolysosomes. These results identify coronin 1C as a novel player of the multi-faceted mechanism responsible for invadopodia formation, MT1-MMP surface exposure and invasiveness in breast cancer cells

    ARF6–JIP3/4 regulate endosomal tubules for MT1-MMP exocytosis in cancer invasion

    No full text
    Invasion of cancer cells into collagen-rich extracellular matrix requires membrane-tethered membrane type 1–matrix metalloproteinase (MT1-MMP) as the key protease for collagen breakdown. Understanding how MT1-MMP is delivered to the surface of tumor cells is essential for cancer cell biology. In this study, we identify ARF6 together with c-Jun NH(2)-terminal kinase–interacting protein 3 and 4 (JIP3 and JIP4) effectors as critical regulators of this process. Silencing ARF6 or JIP3/JIP4 in breast tumor cells results in MT1-MMP endosome mispositioning and reduces MT1-MMP exocytosis and tumor cell invasion. JIPs are recruited by Wiskott-Aldrich syndrome protein and scar homologue (WASH) on MT1-MMP endosomes on which they recruit dynein–dynactin and kinesin-1. The interaction of plasma membrane ARF6 with endosomal JIPs coordinates dynactin–dynein and kinesin-1 activity in a tug-of-war mechanism, leading to MT1-MMP endosome tubulation and exocytosis. In addition, we find that ARF6, MT1-MMP, and kinesin-1 are up-regulated in high-grade triple-negative breast cancers. These data identify a critical ARF6–JIP–MT1-MMP–dynein–dynactin–kinesin-1 axis promoting an invasive phenotype of breast cancer cells

    Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models

    No full text

    Informe 'La Marca Canadiense: La Violencia Y La Minerra Canadiense En Guatemala' (The Canada Brand: Violence and Canadian Mining in Guatemala)

    No full text
    corecore