460 research outputs found

    Evolved stars and the origin of abundance trends in planet hosts

    Get PDF
    Tentative evidence that the properties of evolved stars with planets may be different from what we know for MS hosts has been recently reported. We aim to test whether evolved stars with planets show any chemical peculiarity that could be related to the planet formation process. We determine in a consistent way the metallicity and individual abundances of a large sample of evolved (subgiants and red giants) and MS stars with and without known planetary companions. No differences in the vs. condensation temperature (Tc) slopes are found between the samples of planet and non-planet hosts when all elements are considered. However, if the analysis is restricted to only refractory elements, differences in the Tc-slopes between stars with and without known planets are found. This result is found to be dependent on the stellar evolutionary stage, as it holds for MS and subgiant stars, while there seem to be no difference between planet and non-planet hosts among the sample of giants. A search for correlations between the Tc-slope and the stellar properties reveals significant correlations with the stellar mass and the stellar age. The data also suggest that differences in terms of mass and age between MS planet and non-planet hosts may be present. Our results are well explained by radial mixing in the Galaxy. The sample of giant contains stars more massive and younger than their MS counterparts. This leads to a sample of stars possibly less contaminated by stars not born in the solar neighbourhood, leading to no chemical differences between planet and non planet hosts. The sample of MS stars may contain more stars from the outer disc (specially the non-planet host sample) which might led to the differences observed in the chemical trends.Comment: Accepted for publication by Astronomy and Astrophysic

    Chemical fingerprints of hot Jupiter planet formation

    Get PDF
    The current paradigm to explain the presence of Jupiters with small orbital periods (P << 10 days; hot Jupiters) that involves their formation beyond the snow line following inward migration, has been challenged by recent works that explored the possibility of in situ formation. We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α\alpha elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding pp-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, << 0.01, 0.81, and 0.16 for metallicity, α\alpha, iron-peak, and volatile elements, respectively. We confirm previous works suggesting that more distant planets show higher planetary masses as well as larger eccentricities. We note differences in age and spectral type between the hot and cool planet hosts samples that might affect the abundance comparison. The differences in the distribution of planetary mass, period, eccentricity, and stellar host metallicity suggest a different formation mechanism for hot and cool Jupiters. The slightly larger α\alpha abundances found in stars harbouring cool Jupiters might compensate their lower metallicities allowing the formation of gas-giant planets.Comment: Accepted by Astronomy & Astrophysic

    The Effect of Tides on the Population of PN from Interacting Binaries

    Full text link
    We have used the tidal equations of Zahn to determine the maximum orbital distance at which companions are brought into Roche lobe contact with their giant primary, when the primary expands during the giant phases. This is a key step when determining the rates of interaction between giants and their companions. Our stellar structure calculations are presented as maximum radii reached during the red and asymptotic giant branch (RGB and AGB, respectively) stages of evolution for masses between 0.8 and 4.0 Mo (Z=0.001 - 0.04) and compared with other models to gauge the uncertainty on radii deriving from details of these calculations. We find overall tidal capture distances that are typically 1-4 times the maximum radial extent of the giant star, where companions are in the mass range from 1 Jupiter mass to a mass slightly smaller than the mass of the primary. We find that only companions at initial orbital separations between ~320 and ~630 Ro will be typically captured into a Roche lobe-filling interaction or a common envelope on the AGB. Comparing these limits with the period distribution for binaries that will make PN, we deduce that in the standard scenario where all ~1-8 Mo stars make a PN, at most 2.5 per cent of all PN should have a post-common envelope central star binary, at odds with the observational lower limit of 15-20 per cent. The observed over-abundance of post-interaction central stars of PN cannot be easily explained considering the uncertainties. We examine a range of explanations for this discrepancy.Comment: 19 pages, 16 figures, accepted by Monthly Notices of the Royal Astronomical Societ

    Can solid body destruction explain abundance discrepancies in planetary nebulae?

    Full text link
    In planetary nebulae, abundances of oxygen and other heavy elements derived from optical recombination lines are systematically higher than those derived from collisionally excited lines. We investigate the hypothesis that the destruction of solid bodies may produce pockets of cool, high-metallicity gas that could explain these abundance discrepancies. Under the assumption of maximally efficient radiative ablation, we derive two fundamental constraints that the solid bodies must satisfy in order that their evaporation during the planetary nebula phase should generate a high enough gas phase metallicity. A local constraint implies that the bodies must be larger than tens of meters, while a global constraint implies that the total mass of the solid body reservoir must exceed a few hundredths of a solar mass. This mass greatly exceeds the mass of any population of comets or large debris particles expected to be found orbiting evolved low- to intermediate-mass stars. We therefore conclude that contemporaneous solid body destruction cannot explain the observed abundance discrepancies in planetary nebulae. However, similar arguments applied to the sublimation of solid bodies during the preceding asymptotic giant branch (AGB) phase do not lead to such a clear-cut conclusion. In this case, the required reservoir of volatile solids is only one ten-thousandth of a solar mass, which is comparable to the most massive debris disks observed around solar-type stars, implying that this mechanism may contribute to abundance discrepancies in at least some planetary nebulae, so long as mixing of the high metallicity gas is inefficient.Comment: 8 pages, no figures, ApJ in pres

    The Interaction of Asymptotic Giant Branch Stars with the Interstellar Medium

    Full text link
    We study the hydrodynamical behavior of the gas expelled by moving Asymptotic Giant Branch Stars interacting with the ISM. Our models follow the wind modulations prescribed by stellar evolution calculations, and we cover a range of expected relative velocities (10 to 100 km/s), ISM densities (between 0.01 and 1 cm-3), and stellar progenitor masses (1 and 3.5 Msun). We show how and when bow-shocks, and cometary-like structures form, and in which regime the shells are subject to instabilities. Finally, we analyze the results of the simulations in terms of the different kinematical stellar populations expected in the Galaxy.Comment: ApJ in press, 42 pages, 12 figures, movies of the simulations will be available in the published electronic version of the pape
    • …
    corecore