69 research outputs found

    Biology of recently discovered cytokines: Discerning the pro- and anti-inflammatory properties of interleukin-27

    Get PDF
    IL-27 is a recently identified heterodimeric cytokine produced in response to microbial and host derived inflammatory cues. Initial studies indicated that IL-27 promotes the generation of Th1 responses required for resistance to intracellular infection and unveiled the molecular mechanisms mediating this effect. However, subsequent work uncovered a role for IL-27 in the suppression of Th1 and Th2 responses. Thus, by discussing its pleotropic functions in the context of infection-induced immunity and by drawing parallels to fellow IL-6/IL-12 family cytokines, this review will attempt to reconcile the pro- and anti-inflammatory effects of IL-27

    Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease

    Get PDF
    To explore the interactions between regulatory T cells and pathogenic effector cytokines, we have developed a model of a T cell–mediated systemic autoimmune disorder resembling graft-versus-host disease. The cytokine responsible for tissue inflammation in this disorder is interleukin (IL)-17, whereas interferon (IFN)-γ produced by Th1 cells has a protective effect in this setting. Because of the interest in potential therapeutic approaches utilizing transfer of regulatory T cells and inhibition of the IL-2 pathway, we have explored the roles of these in the systemic disease. We demonstrate that the production of IL-17 and tissue infiltration by IL-17–producing cells occur and are even enhanced in the absence of IL-2. Regulatory T cells favor IL-17 production but prevent the disease when administered early in the course by suppressing expansion of T cells. Thus, the pathogenic or protective effects of cytokines and the therapeutic capacity of regulatory T cells are crucially dependent on the timing and the nature of the disease

    Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells

    Get PDF
    Innate lymphoid cells (ILCs) patrol environmental interfaces to defend against infection and protect barrier integrity. Using a genetic tuning model, we demonstrate that the signal-dependent transcription factor (TF) STAT5 is critical for accumulation of all known ILC subsets in mice and reveal a hierarchy of STAT5 dependency for populating lymphoid and nonlymphoid tissues. We apply transcriptome and genomic distribution analyses to define a STAT5 gene signature in natural killer (NK) cells, the prototypical ILC subset, and provide a systems-based molecular rationale for its key functions downstream of IL-15. We also uncover surprising features of STAT5 behavior, most notably the wholesale redistribution that occurs when NK cells shift from tonic signaling to acute cytokine-driven signaling, and genome-wide coordination with T-bet, another key TF in ILC biology. Collectively, our data position STAT5 as a central node in the TF network that instructs ILC development, homeostasis, and function and provide mechanistic insights on how it works at cellular and molecular levels

    Helper T cell IL-2 production is limited by negative feedback and STAT-dependent cytokine signals

    Get PDF
    Although required for many fundamental immune processes, ranging from self-tolerance to pathogen immunity, interleukin (IL)-2 production is transient, and the mechanisms underlying this brevity remain unclear. These studies reveal that helper T cell IL-2 production is limited by a classic negative feedback loop that functions autonomously or in collaboration with other common γ chain (IL-4 and IL-7) and IL-6/IL-12 family cytokines (IL-12 and IL-27). Consistent with this model for cytokine-dependent regulation, they also demonstrate that the inhibitory effect can be mediated by several signal transducer and activator of transcription (STAT) family transcription factors, namely STAT5, STAT4, and STAT6. Collectively, these findings establish that IL-2 production is limited by a network of autocrine and paracrine signals that are readily available during acute inflammatory responses and, thus, provide a cellular and molecular basis for its transient pattern of expression

    Induction of Cytotoxic T Lymphocyte Antigen 4 (Ctla-4) Restricts Clonal Expansion of Helper T Cells

    Get PDF
    Cytotoxic T lymphocyte antigen (CTLA)-4 plays an essential role in immunologic homeostasis. How this negative regulator of T cell activation executes its functions has remained controversial. We now provide evidence that CTLA-4 mediates a cell-intrinsic counterbalance to restrict the clonal expansion of proliferating CD4+ T cells. The regulation of CTLA-4 expression and function ensures that, after ∼3 cell divisions of expansion, most progeny will succumb to either proliferative arrest or death over the ensuing three cell divisions. The quantitative precision of the counterbalance hinges on the graded, time-independent induction of CTLA-4 expression during the first three cell divisions. In contrast to the limits imposed on unpolarized cells, T helper type 1 (Th1) and Th2 effector progeny may be rescued from proliferative arrest by interleukin (IL)-12 and IL-4 signaling, respectively, allowing appropriately stimulated progeny to proceed to the stage of tissue homing. These results suggest that the cell-autonomous regulation of CTLA-4 induction may be a central checkpoint of clonal expansion of CD4+ T cells, allowing temporally and spatially restricted growth of progeny to be dictated by the nature of the threat posed to the host

    Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells

    Get PDF
    Innate lymphoid cells (ILCs) patrol environmental interfaces to defend against infection and protect barrier integrity. Using a genetic tuning model, we demonstrate that the signal-dependent transcription factor (TF) STAT5 is critical for accumulation of all known ILC subsets in mice and reveal a hierarchy of STAT5 dependency for populating lymphoid and nonlymphoid tissues. We apply transcriptome and genomic distribution analyses to define a STAT5 gene signature in natural killer (NK) cells, the prototypical ILC subset, and provide a systems-based molecular rationale for its key functions downstream of IL-15. We also uncover surprising features of STAT5 behavior, most notably the wholesale redistribution that occurs when NK cells shift from tonic signaling to acute cytokine-driven signaling, and genome-wide coordination with T-bet, another key TF in ILC biology. Collectively, our data position STAT5 as a central node in the TF network that instructs ILC development, homeostasis, and function and provide mechanistic insights on how it works at cellular and molecular levels

    T Helper Plasticity Is Orchestrated by STAT3, Bcl6, and Blimp-1 Balancing Pathology and Protection in Malaria

    Get PDF
    Hybrid Th1/Tfh cells (IFN-γ+IL-21+CXCR5+) predominate in response to several persistent infections. In Plasmodium chabaudi infection, IFN-γ+ T cells control parasitemia, whereas antibody and IL-21+Bcl6+ T cells effect final clearance, suggesting an evolutionary driver for the hybrid population. We found that CD4-intrinsic Bcl6, Blimp-1, and STAT3 coordinately regulate expression of the Th1 master regulator T-bet, supporting plasticity of CD4 T cells. Bcl6 and Blimp-1 regulate CXCR5 levels, and T-bet, IL-27Rα, and STAT3 modulate cytokines in hybrid Th1/Tfh cells. Infected mice with STAT3 knockout (KO) T cells produced less antibody and more Th1-like IFN-γ+IL-21−CXCR5lo effector and memory cells and were protected from re-infection. Conversely, T-bet KO mice had reduced Th1-bias upon re-infection and prolonged secondary parasitemia. Therefore, each feature of the CD4 T cell population phenotype is uniquely regulated in this persistent infection, and the cytokine profile of memory T cells can be modified to enhance the effectiveness of the secondary response

    Influence of elevated-CRP level-related polymorphisms in non-rheumatic Caucasians on the risk of subclinical atherosclerosis and cardiovascular disease in rheumatoid arthritis

    Get PDF
    Association between elevated C-reactive protein (CRP) serum levels and subclinical atherosclerosis and cardiovascular (CV) events was described in rheumatoid arthritis (RA). CRP, HNF1A, LEPR, GCKR, NLRP3, IL1F10, PPP1R3B, ASCL1, HNF4A and SALL1 exert an influence on elevated CRP serum levels in non-rheumatic Caucasians. Consequently, we evaluated the potential role of these genes in the development of CV events and subclinical atherosclerosis in RA patients. Three tag CRP polymorphisms and HNF1A, LEPR, GCKR, NLRP3, IL1F10, PPP1R3B, ASCL1, HNF4A and SALL1 were genotyped in 2,313 Spanish patients by TaqMan. Subclinical atherosclerosis was determined in 1,298 of them by carotid ultrasonography (by assessment of carotid intima-media thickness-cIMT-and presence/absence of carotid plaques). CRP serum levels at diagnosis and at the time of carotid ultrasonography were measured in 1,662 and 1,193 patients, respectively, by immunoturbidimetry. Interestingly, a relationship between CRP and CRP serum levels at diagnosis and at the time of the carotid ultrasonography was disclosed. However, no statistically significant differences were found when CRP, HNF1A, LEPR, GCKR, NLRP3, IL1F10, PPP1R3B, ASCL1, HNF4A and SALL1 were evaluated according to the presence/absence of CV events, carotid plaques and cIMT after adjustment. Our results do not confirm an association between these genes and CV disease in RA

    An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome

    Get PDF
    Inflammasomes are innate immune sensors that respond to pathogen and damage-associated signals with caspase-1 activation, IL-1β and IL-18 secretion, and macrophage pyroptosis. The discovery that dominant gain-of-function mutations in NLRP3 cause the Cryopyrin Associated Periodic Syndromes (CAPS) and trigger spontaneous inflammasome activation and IL-1β oversecretion, led to successful treatment with IL-1 blocking agents1. Herein, we report a de novo missense mutation, c.1009A>T, p.Thr337Ser, in the nucleotide-binding domain of inflammasome component NLRC4 (IPAF/CARD12) that causes early-onset recurrent fever flares and Macrophage Activation Syndrome (MAS). Functional analyses demonstrated spontaneous inflammasome formation and production of the inflammasome-dependent cytokines IL-1β and IL-18, the latter exceeding levels in CAPS. The NLRC4 mutation caused constitutive caspase-1 cleavage in transduced cells and increased production of IL-18 by both patient and NLRC4 mutant macrophages. Thus, we describe a novel monoallelic inflammasome defect that expands the monogenic autoinflammatory disease spectrum to include MAS and suggests novel targets for therapy

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
    corecore