14 research outputs found

    Reach Energy of Digraphs

    Get PDF
    A Digraph D consists of two finite sets ), where  denotes the vertex set and denotes the arc set. For vertices  if there exists a directed path from  to  then  is said to be reachable from  and vice versa. The Reachability matrix of D is the  matrix , where  if  is reachable from and  otherwise. The eigen values corresponding to the reachability matrix are called reach eigen values. The reach energy of a digraph is defined by where  is the eigen value of the reachability matrix. In this paper we introduce the reach spectrum of a digraph and study its properties and bounds. Moreover, we compute reachspectrum for some digraphs

    Phosphorylation of bamboo mosaic virus satellite RNA (satBaMV)-encoded protein P20 downregulates the formation of satBaMV-P20 ribonucleoprotein complex

    Get PDF
    Bamboo mosaic virus (BaMV) satellite RNA (satBaMV) depends on BaMV for its replication and encapsidation. SatBaMV-encoded P20 protein is an RNA-binding protein that facilitates satBaMV systemic movement in co-infected plants. Here, we examined phosphorylation of P20 and its regulatory functions. Recombinant P20 (rP20) was phosphorylated by host cellular kinase(s) in vitro, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and mutational analyses revealed Ser-11 as the phosphorylation site. The phosphor-mimic rP20 protein interactions with satBaMV-translated mutant P20 were affected. In overlay assay, the Asp mutation at S11 (S11D) completely abolished the self-interaction of rP20 and significantly inhibited the interaction with both the WT and S11A rP20. In chemical cross-linking assays, S11D failed to oligomerize. Electrophoretic mobility shift assay and subsequent Hill transformation analysis revealed a low affinity of the phospho-mimicking rP20 for satBaMV RNA. Substantial modulation of satBaMV RNA conformation upon interaction with nonphospho-mimic rP20 in circular dichroism analysis indicated formation of stable satBaMV ribonucleoprotein complexes. The dissimilar satBaMV translation regulation of the nonphospho- and phospho-mimic rP20 suggests that phosphorylation of P20 in the ribonucleoprotein complex converts the translation-incompetent satBaMV RNA to messenger RNA. The phospho-deficient or phospho-mimicking P20 mutant of satBaMV delayed the systemic spread of satBaMV in co-infected Nicotiana benthamiana with BaMV. Thus, satBaMV likely regulates the formation of satBaMV RNP complex during co-infection in planta

    Subcellular localization and expression of bamboo mosaic virus satellite RNA-encoded protein

    Get PDF
    The satellite RNA of bamboo mosaic virus (satBaMV) has a single open reading frame encoding a non-structural protein, P20, which facilitates long-distance movement of satBaMV in BaMV and satBaMV co-infected plants. Immunohistochemistry and immunoelectron microscopy revealed that the P20 protein accumulated in the cytoplasm and nuclei in co-infected cells. P20 and the helper virus coat protein (CP) were highly similar in their subcellular localization, except that aggregates of BaMV virions were not labelled with anti-P20 serum. The BaMV CP protein was fairly abundant in mesophyll cells, whilst P20 was more frequently detected in mesophyll cells and vascular tissues. The expression kinetics of the P20 protein was similar to but slightly earlier than that of CP in co-infected Bambusa oldhamii protoplasts and Nicotiana benthamiana leaves. However, satBaMV-encoded protein levels declined rapidly in the late phase of co-infection. During co-infection, in addition to the intact P20, a low-molecular-mass polypeptide of 16 kDa was identified as a P20 C-terminally truncated product; the possible method of generation of the truncated protein is discussed

    The Arginine-Rich Motif of Bamboo mosaic virus Satellite RNA-Encoded P20 Mediates Self-Interaction, Intracellular Targeting, and Cell-to-Cell Movement

    No full text
    [[sponsorship]]植物暨微生物學研究所[[note]]已出版;[SCI];有審查制度;具代表性[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=0894-0282&DestApp=JCR&RQ=IF_CAT_BOXPLOT[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=RID&SrcApp=RID&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=00023850340000

    Derivation, Functionalization of (S)-Goniothalamin from <i>Goniothalamus wightii</i> and Their Derivative Targets SARS-CoV-2 M<sup>Pro</sup>, S<sup>Pro</sup>, and RdRp: A Pharmacological Perspective

    No full text
    The tracing of an alternative drug, Phytochemicals is a promising approach to the viral threats that have emerged over the past two years. Across the world, herbal medicine is a better solution against anti-viral diseases during pandemic periods. Goniothalamus wightii is an herbal plant, which has diverse bioactive compounds with anticancer, antioxidant, and anti-viral properties. The aim of the study was to isolate the compound by chromatography studies and functionalization by FT-IR, LC-MS, and NMR (C-NMR, H-NMR). As a result, the current work focuses on whether (S)-Goniathalamin and its analogue could act as natural anti-viral molecules for multiple target proteins viz., MPro, RdRp, and SPro, which are required for SARS-CoV-2 infection. Overall, 954 compounds were examined and the molecular-docking studies were performed on the maestro platform of Schrodinger software. Molecular-dynamics simulation studies were performed on two complex major compounds to confirm their affinity across 150 simulations. This research suggests that plant-based drugs have high levels of antiviral properties against coronavirus. However, more research is needed to verify its antiviral properties
    corecore