254 research outputs found

    Down-regulation of Groundnut Rosette Virus Replication by a Variant Satellite RNA

    Get PDF
    AbstractSymptom production in groundnut plants infected with groundnut rosette virus (GRV) depends on the presence of satellite RNA (sat-RNA) in the GRV culture, and sat-RNA variants that induce only mild symptoms are known. One such variant drastically diminished the replication of GRV genomic RNA in infectedNicotiana benthamianaplants. This down-regulating ability did not involve either of the two open reading frames in the sat-RNA but was controlled by a region near its 5′ end, which is required for sat-RNA replication. WhenN. benthamianaplants were inoculated with GRV and the mild satellite and challenged by inoculation with a GRV isolate (YB) containing a sat-RNA that induces yellow blotch symptoms, no symptoms appeared and little GRV genomic RNA or sat-RNA was detected in the plants, provided the two inoculations were no more than 2 days apart. A GRV isolate containing a sat-RNA that neither induces symptoms inN. benthamiananor affects genomic RNA accumulation also provided protection against yellow blotch symptom production if inoculated before or up to 2 days after isolate YB. However, in this case protection was incomplete and both GRV RNA and sat-RNA accumulated to normal levels. It is suggested that sequences from the mild sat-RNA may provide a novel source of resistance against rosette disease

    Interactive Responses of Potato (Solanum tuberosum L.) Plants to Heat Stress and Infection With Potato Virus Y

    Get PDF
    Potato (Solanum tuberosum) plants are exposed to diverse environmental stresses, which may modulate plant–pathogen interactions, and potentially cause further decreases in crop productivity. To provide new insights into interactive molecular responses to heat stress combined with virus infection in potato, we analyzed expression of genes encoding pathogenesis-related (PR) proteins [markers of salicylic acid (SA)-mediated plant defense] and heat shock proteins (HSPs), in two potato cultivars that differ in tolerance to elevated temperatures and in susceptibility to potato virus Y (PVY). In plants of cv. Chicago (thermosensitive and PVY-susceptible), increased temperature reduced PR gene expression and this correlated with enhancement of PVY infection (virus accumulation and symptom production). In contrast, with cv. Gala (thermotolerant and PVY resistant), which displayed a greater increase in PR gene expression in response to PVY infection, temperature affected neither PR transcript levels nor virus accumulation. HSP genes were induced by elevated temperature in both cultivars but to higher levels in the thermotolerant (Gala) cultivar. PVY infection did not alter expression of HSP genes in the Gala cultivar (possibly because of the low level of virus accumulation) but did induce expression of HSP70 and HSP90 in the susceptible cultivar (Chicago). These findings suggest that responses to heat stress and PVY infection in potato have some common underlying mechanisms, which may be integrated in a specific consolidated network that controls plant sensitivity to multiple stresses in a cultivar-specific manner. We also found that the SA pre-treatment subverted the sensitive combined (heat and PVY) stress phenotype in Chicago, implicating SA as a key component of such a regulatory network

    Resistance to viruses of potato: current status and prospects

    Get PDF
    The potato (Solanum tuberosum), one of the most important food crops in the world, is infected by various viruses, nine of which have great economic significance, causing substantial losses in the yield and quality of the crop. To minimize consequences of virus infections, in developed countries specific phytosanitary measures have been established and are being improved to monitor the spread of viruses and certify seed potato material using virus diagnostics and production of virus-free potato cultivars. However, in the longer-term, the development and deployment of potato cultivars resistant to viruses would be a priority. Some new potato cultivars and lines resistant to many viruses have already been generated using either traditional breeding methods or genetic engineering. For this purpose, natural resistance genes, primarily from wild Solanum species, or virus derived nucleotide sequences have been used as sources of resistance. However, these approaches have essential limitations because the acquired resistance is highly specific (against individual viruses only), is not durable, can be overcome by viruses and, finally due to regulatory bans on genetically modified organisms. Recently developed new genome editing technologies with the potential to be a powerful tool for gene design open up broad opportunities for development of next-generation resistance genes. The most promising approaches are (1) site-directed mutagenesis of the genes conferring specific resistance to make their action much broader and (2) the use of non-specific (nonhost) resistance to generate plants resistant to unrelated viruses and, in some cases, to other pathogens and even abiotic stresses. Identification of genes involved in mechanisms of non-host resistance is just beginning. The cell nucleus is a new source of novel factors involved in various signaling pathways resulting in defence response to virus infection. This review focuses on the approaches and challenges related to the development of potato plants resistant to virus infections

    Superchiral near fields detect virus structure

    Get PDF
    Optical spectroscopy can be used to quickly characterise the structural properties of individual molecules. However, it cannot be applied to biological assemblies because light is generally blind to the spatial distribution of the component molecules. This insensitivity arises from the mismatch in length scales between the assemblies (a few tens of nm) and the wavelength of light required to excite chromophores (≥150 nm). Consequently, with conventional spectroscopy, ordered assemblies, such as the icosahedral capsids of viruses, appear to be indistinguishable isotropic spherical objects. This limits potential routes to rapid high-throughput portable detection appropriate for point-of-care diagnostics. Here, we demonstrate that chiral electromagnetic (EM) near fields, which have both enhanced chiral asymmetry (referred to as superchirality) and subwavelength spatial localisation (∼10 nm), can detect the icosahedral structure of virus capsids. Thus, they can detect both the presence and relative orientation of a bound virus capsid. To illustrate the potential uses of the exquisite structural sensitivity of subwavelength superchiral fields, we have used them to successfully detect virus particles in the complex milieu of blood serum

    Insight on genes affecting tuber development in potato upon <i>Potato spindle tuber viroid</i> (PSTVd) infection

    Get PDF
    Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection

    A Family of Plasmodesmal Proteins with Receptor-Like Properties for Plant Viral Movement Proteins

    Get PDF
    Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement

    Two Plant Viral Suppressors of Silencing Require the Ethylene-Inducible Host Transcription Factor RAV2 to Block RNA Silencing

    Get PDF
    RNA silencing is a highly conserved pathway in the network of interconnected defense responses that are activated during viral infection. As a counter-defense, many plant viruses encode proteins that block silencing, often also interfering with endogenous small RNA pathways. However, the mechanism of action of viral suppressors is not well understood and the role of host factors in the process is just beginning to emerge. Here we report that the ethylene-inducible transcription factor RAV2 is required for suppression of RNA silencing by two unrelated plant viral proteins, potyvirus HC-Pro and carmovirus P38. Using a hairpin transgene silencing system, we find that both viral suppressors require RAV2 to block the activity of primary siRNAs, whereas suppression of transitive silencing is RAV2-independent. RAV2 is also required for many HC-Pro-mediated morphological anomalies in transgenic plants, but not for the associated defects in the microRNA pathway. Whole genome tiling microarray experiments demonstrate that expression of genes known to be required for silencing is unchanged in HC-Pro plants, whereas a striking number of genes involved in other biotic and abiotic stress responses are induced, many in a RAV2-dependent manner. Among the genes that require RAV2 for induction by HC-Pro are FRY1 and CML38, genes implicated as endogenous suppressors of silencing. These findings raise the intriguing possibility that HC-Pro-suppression of silencing is not caused by decreased expression of genes that are required for silencing, but instead, by induction of stress and defense responses, some components of which interfere with antiviral silencing. Furthermore, the observation that two unrelated viral suppressors require the activity of the same factor to block silencing suggests that RAV2 represents a control point that can be readily subverted by viruses to block antiviral silencing

    Genetic Management of Virus Diseases in Peanut

    Get PDF
    Peanut, also known as groundnut (Arachis hypogaea L.) is a major oilseed crop in the world. About 31 viruses representing 14 genera are reported to naturally infe.ct peanut in different parts of the world, although only a few of these are of economic importance. These include groundnutrosette disease in Africa, tomato spotted wilt-disease in the United States, peanut bud necrosis disease in south Asia, and peanut stripe virus disease in east and southeast Asia. Cucumber mosaic virus disease in China and Argentina and peanut stem necrosis disease in certain -pockets in southern India are also economically important. Host plant resistance provides the most effective and economic option to manage virus diseases. However, for many virus diseases, effective resistance gene(s) in cultivated peanut have not been identified. With a few exceptions, the virus resistance breeding work has received little attention in peanut improvement programs. Transgenic resistance offers another option in virus resistance breeding. This review focuses on the status of genetic resistance to various economically important groundnut viruses and'use of transgenic-technology for the improvement of virus resistance

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16,1996 Binyanei haOoma, Jerusalem, Israel Part 2 Plenary Lectures

    Get PDF

    Functional analysis of a plant virus replication ‘factory’ using live cell imaging

    Get PDF
    Plant viruses have developed a number of strategies that enable them to become obligate intracellular parasites of many agricultural crops. Potato virus X (PVX) belongs to a group of positive-sense, single-stranded plant RNA viruses that replicate on host membranes and form elaborate structures known as viral replication complexes (VRCs) that contain viral RNA (vRNA), proteins and host cellular components. VRCs are the principal sites of viral genome replication, virion assembly and packaging of vRNA for export into neighbouring cells. For many animal viruses, host membrane association is crucial for RNA export. For plant viruses, it is not yet known how vRNA is transported to and through plant plasmodesmata. PVX encodes genetic information required for its movement between cells; three viral triple gene block (TGB) movement proteins and a viral coat protein are essential for viral trafficking. This research project studies the relationship between PVX and its host plants, Nicotiana benthamina and Nicotiana tabacum. A particular focus of this project is exploration of the structural and functional significance of the PVX VRC and how the virus recruits cell host components for its replication and movement between cells. The role of specific viral proteins in establishing the VRC, and the ways in which these interact with host organelles, was investigated. A combination of different approaches was used, including RNA-binding dyes and a Pumilio-based bimolecular fluorescence complementation assay for detection of the vRNA, fluorescent reporters for virusencoded proteins, fluorescent reporters for host organelles involved in viral replication, and also transgenic tobacco plants expressing reporters for specific plant components (endoplasmic reticulum, Golgi, actin, microtubules and plasmodesmata). In addition, mutagenesis was used to study the functions of individual viral proteins in replication and movement. All of these approaches were combined to achieve live-cell imaging of the PVX infection process. The PVX VRC was shown to be a highly compartmentalised structure; (+)-stranded vRNA was concentrated around the viral TGB1 protein, which was localised in discrete circular compartments within the VRC while coat protein was localised to the external edges of the VRC. The vRNA was closely associated with host components (endoplasmic reticulum and actin) shown to be involved in the formation of the VRC. The TGB2/TGB3 viral proteins were shown to colocalise with the host endomembranes (ER) and to exit these compartments in the form of motile granules. vRNA, TGB1, TGB2 and CP localised to plasmodesmata of the infected cells. TGB1 was shown to move cell-to-cell and recruit ER, Golgi and actin in the absence of viral infection. In the presence of virus, TGB1 targeted the VRCs in several neighbouring cells. A model of PVX replication and movement is proposed in which TGB1 functions as a key component for recruitment of host components into the VRC to enable viral replication and spread
    • …
    corecore