6 research outputs found

    In vitro and in vivo activities of a trithiolato-diRuthenium complex conjugated with sulfadoxine against the apicomplexan parasite Toxoplasma gondii.

    Get PDF
    Organometallic compounds, including Ruthenium complexes, have been widely developed as anti-cancer chemotherapeutics, but have also attracted much interest as potential anti-parasitic drugs. Recently hybrid drugs composed of organometallic Ruthenium moieties that were complexed to different antimicrobial agents were synthesized. One of these compounds, a trithiolato-diRuthenium complex (RU) conjugated to sulfadoxine (SDX), inhibited proliferation of Toxoplasma gondii tachyzoites grown in human foreskin fibroblast (HFF) monolayers with an IC50 < 150 nM, while SDX and the non-modified RU complex applied either individually or as an equimolar mixture were much less potent. In addition, conjugation of SDX to RU lead to decreased HFF cytotoxicity. RU-SDX did not impair the in vitro proliferation of murine splenocytes at concentrations ranging from 0.1 to 0.5 μM but had an impact at 2 μM, and induced zebrafish embryotoxicity at 20 μM, but not at 2 or 0.2 μM. RU-SDX acted parasitostatic but not parasiticidal, and induced transient ultrastructural changes in the mitochondrial matrix of tachyzoites early during treatment. While other compounds that target the mitochondrion such as the uncouplers FCCP and CCCP and another trithiolato-Ruthenium complex conjugated to adenine affected the mitochondrial membrane potential, no such effect was detected for RU-SDX. Evaluation of the in vivo efficacy of RU-SDX in a murine T. gondii oocyst infection model comprised of non-pregnant outbred CD1 mice showed no effects on the cerebral parasite burden, but reduced parasite load in the eyes and in heart tissue

    Working towards the development of vaccines and chemotherapeutics against neosporosis—With all of its ups and downs—Looking ahead

    No full text
    Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants

    A review on polyaniline-based materials applications in heavy metals removal and catalytic processes

    No full text
    corecore