5 research outputs found

    Development, validation and quantitative assessment of an enzymatic assay suitable for small molecule screening and profiling: A case-study

    Get PDF
    The successful discovery and subsequent development of small molecule inhibitors of drug targets relies on the establishment of robust, cost-effective, quantitative, and physiologically relevant in vitro assays that can support prolonged screening and optimization campaigns. The current study illustrates the process of developing and validating an enzymatic assay for the discovery of small molecule inhibitors using alkaline phosphatase from bovine intestine as model target. The assay development workflow includes an initial phase of optimization of assay materials, reagents, and conditions, continues with a process of miniaturization and automation, and concludes with validation by quantitative measurement of assay performance and signal variability. The assay is further evaluated for dose–response and mechanism-of-action studies required to support structure–activity-relationship studies. Emphasis is placed on the most critical aspects of assay optimization and other relevant considerations, including the technology, assay materials, buffer constituents, reaction conditions, liquid handling equipment, analytical instrumentation, and quantitative assessments. Examples of bottlenecks encountered during assay development and strategies to address them are provided

    Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles

    Full text link
    [EN] We report herein an evaluation of the effect of several mesoporous silica nanoparticles (MSNs) on the cellular uptake and in vitro cytotoxicity in human cells. Bare MSNs and MSNs functionalized with polyethylene glycol or hyaluronic acid are employed to evaluate uptake efficiency and mechanisms of endocytosis in cancer (MDA-MB-231) and non-cancer (MCF10A) cells. Moreover, changes in viability, cell cycle, oxidative stress, and mitochondrial membrane potential are evaluated. Our results confirm that MSNs are internalized efficiently by human cells and that uptake mechanisms differ for cell types and particles. We also confirm that MSNs are biocompatible materials that do not induce ROS/RNS production, nor changes on mitochondrial membrane potential or cell cycle.The authors want to thank the Spanish Government RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and PI18/01219 (ISCIII), the Generalitat Valenciana (PROMETEO/2018/024 and ACIF/2016/030), and CIBER-BBN (CB07/01/2012) and CIBER-ONC (CB16/12/00481) for support.Garrido-Cano, I.; Candela-Noguera, V.; Herrera, G.; Cejalvo, JM.; Lluch, A.; Marcos Martínez, MD.; Sancenón Galarza, F.... (2021). Biocompatibility and internalization assessment of bare and functionalised mesoporous silica nanoparticles. Microporous and Mesoporous Materials. 310:1-12. https://doi.org/10.1016/j.micromeso.2020.110593S112310Contado, C. (2015). Nanomaterials in consumer products: a challenging analytical problem. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00048Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327. doi:10.1016/j.nano.2014.09.014Kankala, R. K., Han, Y., Na, J., Lee, C., Sun, Z., Wang, S., … Wu, K. C. ‐W. (2020). Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Advanced Materials, 32(23), 1907035. doi:10.1002/adma.201907035García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242Doustkhah, E., Lin, J., Rostamnia, S., Len, C., Luque, R., Luo, X., … Ide, Y. (2018). Development of Sulfonic-Acid-Functionalized Mesoporous Materials: Synthesis and Catalytic Applications. Chemistry - A European Journal, 25(7), 1614-1635. doi:10.1002/chem.201802183Möller, K., & Bein, T. (2019). Degradable Drug Carriers: Vanishing Mesoporous Silica Nanoparticles. Chemistry of Materials, 31(12), 4364-4378. doi:10.1021/acs.chemmater.9b00221Paris, J. L., Colilla, M., Izquierdo-Barba, I., Manzano, M., & Vallet-Regí, M. (2017). Tuning mesoporous silica dissolution in physiological environments: a review. Journal of Materials Science, 52(15), 8761-8771. doi:10.1007/s10853-017-0787-1Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Mekaru, H., Lu, J., & Tamanoi, F. (2015). Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Advanced Drug Delivery Reviews, 95, 40-49. doi:10.1016/j.addr.2015.09.009SLOWING, I., VIVEROESCOTO, J., WU, C., & LIN, V. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers☆. Advanced Drug Delivery Reviews, 60(11), 1278-1288. doi:10.1016/j.addr.2008.03.012Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348jLlopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511Luis, B., Llopis‐Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., … Martínez‐Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986-14990. doi:10.1002/anie.201908867De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161Polo, L., Gómez-Cerezo, N., Aznar, E., Vivancos, J.-L., Sancenón, F., Arcos, D., … Martínez-Máñez, R. (2017). Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomaterialia, 50, 114-126. doi:10.1016/j.actbio.2016.12.025Ultimo, A., Giménez, C., Bartovsky, P., Aznar, E., Sancenón, F., Marcos, M. D., … Murguía, J. R. (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 22(5), 1582-1586. doi:10.1002/chem.201504629Slowing, I., Trewyn, B. G., & Lin, V. S.-Y. (2006). Effect of Surface Functionalization of MCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells. Journal of the American Chemical Society, 128(46), 14792-14793. doi:10.1021/ja0645943Chung, T.-H., Wu, S.-H., Yao, M., Lu, C.-W., Lin, Y.-S., Hung, Y., … Huang, D.-M. (2007). The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials, 28(19), 2959-2966. doi:10.1016/j.biomaterials.2007.03.006Nairi, V., Magnolia, S., Piludu, M., Nieddu, M., Caria, C. A., Sogos, V., … Salis, A. (2018). Mesoporous silica nanoparticles functionalized with hyaluronic acid. Effect of the biopolymer chain length on cell internalization. Colloids and Surfaces B: Biointerfaces, 168, 50-59. doi:10.1016/j.colsurfb.2018.02.019Xie, X., Liao, J., Shao, X., Li, Q., & Lin, Y. (2017). The Effect of shape on Cellular Uptake of Gold Nanoparticles in the forms of Stars, Rods, and Triangles. Scientific Reports, 7(1). doi:10.1038/s41598-017-04229-zDos Santos, T., Varela, J., Lynch, I., Salvati, A., & Dawson, K. A. (2011). Effects of Transport Inhibitors on the Cellular Uptake of Carboxylated Polystyrene Nanoparticles in Different Cell Lines. PLoS ONE, 6(9), e24438. doi:10.1371/journal.pone.0024438Kuhn, D. A., Vanhecke, D., Michen, B., Blank, F., Gehr, P., Petri-Fink, A., & Rothen-Rutishauser, B. (2014). Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein Journal of Nanotechnology, 5, 1625-1636. doi:10.3762/bjnano.5.174Lunov, O., Syrovets, T., Loos, C., Beil, J., Delacher, M., Tron, K., … Simmet, T. (2011). Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. ACS Nano, 5(3), 1657-1669. doi:10.1021/nn2000756Calero, M., Gutiérrez, L., Salas, G., Luengo, Y., Lázaro, A., Acedo, P., … Villanueva, A. (2014). Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), 733-743. doi:10.1016/j.nano.2013.11.010Ebabe Elle, R., Rahmani, S., Lauret, C., Morena, M., Bidel, L. P. R., Boulahtouf, A., … Badia, E. (2016). Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells. Molecular Pharmaceutics, 13(8), 2647-2660. doi:10.1021/acs.molpharmaceut.6b00190Heikkilä, T., Santos, H. A., Kumar, N., Murzin, D. Y., Salonen, J., Laaksonen, T., … Lehto, V.-P. (2010). Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 74(3), 483-494. doi:10.1016/j.ejpb.2009.12.006Kim, I.-Y., Joachim, E., Choi, H., & Kim, K. (2015). Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine: Nanotechnology, Biology and Medicine, 11(6), 1407-1416. doi:10.1016/j.nano.2015.03.004Tao, Z., Toms, B. B., Goodisman, J., & Asefa, T. (2009). Mesoporosity and Functional Group Dependent Endocytosis and Cytotoxicity of Silica Nanomaterials. Chemical Research in Toxicology, 22(11), 1869-1880. doi:10.1021/tx900276uLin, W., Huang, Y., Zhou, X.-D., & Ma, Y. (2006). In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217(3), 252-259. doi:10.1016/j.taap.2006.10.004McCarthy, J., Inkielewicz-Stępniak, I., Corbalan, J. J., & Radomski, M. W. (2012). Mechanisms of Toxicity of Amorphous Silica Nanoparticles on Human Lung Submucosal Cells in Vitro: Protective Effects of Fisetin. Chemical Research in Toxicology, 25(10), 2227-2235. doi:10.1021/tx3002884Kettiger, H., Sen Karaman, D., Schiesser, L., Rosenholm, J. M., & Huwyler, J. (2015). Comparative safety evaluation of silica-based particles. Toxicology in Vitro, 30(1), 355-363. doi:10.1016/j.tiv.2015.09.030Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139Gomes, A., Fernandes, E., & Lima, J. L. F. C. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65(2-3), 45-80. doi:10.1016/j.jbbm.2005.10.003Kalyanaraman, B., Darley-Usmar, V., Davies, K. J. A., Dennery, P. A., Forman, H. J., Grisham, M. B., … Ischiropoulos, H. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology and Medicine, 52(1), 1-6. doi:10.1016/j.freeradbiomed.2011.09.030Scaduto, R. C., & Grotyohann, L. W. (1999). Measurement of Mitochondrial Membrane Potential Using Fluorescent Rhodamine Derivatives. Biophysical Journal, 76(1), 469-477. doi:10.1016/s0006-3495(99)77214-0Creed, S., & McKenzie, M. (2019). Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM). Cancer Metabolism, 69-76. doi:10.1007/978-1-4939-9027-6_5Pisani, C., Rascol, E., Dorandeu, C., Charnay, C., Guari, Y., Chopineau, J., … Prat, O. (2017). Biocompatibility assessment of functionalized magnetic mesoporous silica nanoparticles in human HepaRG cells. Nanotoxicology, 11(7), 871-890. doi:10.1080/17435390.2017.1378749Verma, A., & Stellacci, F. (2010). Effect of Surface Properties on Nanoparticleâ Cell Interactions. Small, 6(1), 12-21. doi:10.1002/smll.200901158Yin Win, K., & Feng, S.-S. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26(15), 2713-2722. doi:10.1016/j.biomaterials.2004.07.050REJMAN, J., OBERLE, V., ZUHORN, I. S., & HOEKSTRA, D. (2004). Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochemical Journal, 377(1), 159-169. doi:10.1042/bj20031253Salatin, S., & Yari Khosroushahi, A. (2017). Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine, 21(9), 1668-1686. doi:10.1111/jcmm.13110Vercauteren, D., Vandenbroucke, R. E., Jones, A. T., Rejman, J., Demeester, J., De Smedt, S. C., … Braeckmans, K. (2010). The Use of Inhibitors to Study Endocytic Pathways of Gene Carriers: Optimization and Pitfalls. Molecular Therapy, 18(3), 561-569. doi:10.1038/mt.2009.281Dutta, D., & Donaldson, J. G. (2012). Search for inhibitors of endocytosis. Cellular Logistics, 2(4), 203-208. doi:10.4161/cl.23967Gratton, S. E. A., Ropp, P. A., Pohlhaus, P. D., Luft, J. C., Madden, V. J., Napier, M. E., & DeSimone, J. M. (2008). The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences, 105(33), 11613-11618. doi:10.1073/pnas.0801763105Iversen, T., Frerker, N., & Sandvig, K. (2012). Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. Journal of Nanobiotechnology, 10(1), 33. doi:10.1186/1477-3155-10-33Jambhrunkar, S., Qu, Z., Popat, A., Yang, J., Noonan, O., Acauan, L., … Karmakar, S. (2014). Effect of Surface Functionality of Silica Nanoparticles on Cellular Uptake and Cytotoxicity. Molecular Pharmaceutics, 11(10), 3642-3655. doi:10.1021/mp500385nZhang, H., Dunphy, D. R., Jiang, X., Meng, H., Sun, B., Tarn, D., … Brinker, C. J. (2012). Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 134(38), 15790-15804. doi:10.1021/ja304907cMurugadoss, S., Lison, D., Godderis, L., Van Den Brule, S., Mast, J., Brassinne, F., … Hoet, P. H. (2017). Toxicology of silica nanoparticles: an update. Archives of Toxicology, 91(9), 2967-3010. doi:10.1007/s00204-017-1993-yCHEN, M., & VONMIKECZ, A. (2005). Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO nanoparticles. Experimental Cell Research, 305(1), 51-62. doi:10.1016/j.yexcr.2004.12.021Sun, L., Li, Y., Liu, X., Jin, M., Zhang, L., Du, Z., … Sun, Z. (2011). Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicology in Vitro, 25(8), 1619-1629. doi:10.1016/j.tiv.2011.06.01
    corecore