60 research outputs found

    Chemoautotrophy at deep-sea vents : past, present, and future

    Get PDF
    Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 218–233, doi:10.5670/oceanog.2012.21.Chemolithoautotrophic microorganisms are at the nexus of hydrothermal systems by effectively transferring the energy from the geothermal source to the higher trophic levels. While the validity of this conceptual framework is well established at this point, there are still significant gaps in our understanding of the microbiology and biogeochemistry of deep-sea hydrothermal systems. Important questions in this regard are: (1) How much, at what rates, and where in the system is organic carbon being produced? (2) What are the dominant autotrophs, where do they reside, and what is the relative importance of free-swimming, biofilm-forming, and symbiotic microbes? (3) Which metabolic pathways are they using to conserve energy and to fix carbon? (4) How does community-wide gene expression in fluid and biofilm communities compare? and (5) How efficiently is the energy being utilized, transformed into biomass, and transferred to higher trophic levels? In particular, there is currently a notable lack of process-oriented studies that would allow an assessment of the larger role of these ecosystems in global biogeochemical cycles. By combining the presently available powerful "omic" and single-cell tools with thermodynamic modeling, experimental approaches, and new in situ instrumentation to measure rates and concentrations, it is now possible to bring our understanding of these truly fascinating ecosystems to a new level and to place them in a quantitative framework and thus a larger global context.This review was written with support from NSF grants OCE-1136727, OCE-1038131, and OCE-1131095 (SMS) and OCE-1136451 (CV). Research mentioned in the review that was carried out in the labs of CV and SMS was supported by NSF grants MCB-0843678 (CV) and OCE-0452333 (SMS)

    Detection and phylogenetic analysis of the membrane-bound nitrate reductase (Nar) in pure cultures and microbial communities from deep-sea hydrothermal vents

    Get PDF
    Over the past few years the relevance of nitrate respiration in microorganisms from deep-sea hydrothermal vents has become evident. In this study, we surveyed the membrane-bound nitrate reductase (Nar) encoding gene in three different deep-sea vent microbial communities from the East Pacific Rise and the Mid-Atlantic Ridge. Additionally, we tested pure cultures of vent strains for their ability to reduce nitrate and for the presence of the NarG-encoding gene in their genomes. By using the narG gene as a diagnostic marker for nitrate-reducing bacteria, we showed that nitrate reductases related to Gammaproteobacteria of the genus Marinobacter were numerically prevalent in the clone libraries derived from a black smoker and a diffuse flow vent. In contrast, NarG sequences retrieved from a community of filamentous bacteria located about 50 cm above a diffuse flow vent revealed the presence of a yet to be identified group of enzymes. 16S rRNA gene-inferred community compositions, in accordance with previous studies, showed a shift from Alpha- and Gammaproteobacteria to Epsilonproteobacteria as the vent fluids become warmer and more reducing. Based on these findings, we argue that Nar-catalyzed nitrate reduction is likely relevant in temperate and less reducing environments where Alpha- and Gammaproteobacteria are more abundant and where nitrate concentrations reflect that of background deep seawater. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved

    Dynamic drivers of a shallow-water hydrothermal vent ecogeochemical system (Milos, Eastern Mediterranean)

    Get PDF
    Shallow-water hydrothermal vents share many characteristics with their deep-sea analogs. However, despite ease of access, much less is known about the dynamics of these systems. Here, we report on the spatial and temporal chemical variability of a shallow-water vent system at Paleochori Bay, Milos Island, Greece, and on the bacterial and archaeal diversity of associated sandy sediments. Our multi-analyte voltammetric profiles of dissolved O2 and hydrothermal tracers (e.g. Fe2+, FeSaq, Mn2+) on sediment cores taken along a transect in hydrothermally affected sediments indicate three different areas: the central vent area (highest temperature) with a deeper penetration of oxygen into the sediment, and a lack of dissolved Fe2+ and Mn2+; a middle area (0.5 m away) rich in dissolved Fe2+ and Mn2+ (exceeding 2 mM) and high free sulfide with potential for microbial sulfide oxidation as suggested by the presence of white mats at the sediment surface; and, finally, an outer rim area (1-1.5 m away) with lower concentrations of Fe2+ and Mn2+ and higher signals of FeSaq, indicating an aged hydrothermal fluid contribution. In addition, high-frequency temperature series and continuous in situ H2S measurements with voltammetric sensors over a 6-day time period at a distance 0.5 m away from the vent center showed substantial temporal variability in temperature (32 to 46 ºC ) and total sulfide (488 to 1329 �M) in the upper sediment layer. Analysis of these data suggests that tides, winds, and abrupt geodynamic events generate intermittent mixing conditions lasting for several hours to days. Despite substantial variability, the concentration of sulfide available for chemoautotrophic microbes remained high. These findings are consistent with the predominance of Epsilonproteobacteria in the hydrothermally influenced sediments Diversity and metagenomic analyses on sediments and biofilm collected along a transect from the center to the outer rim of the vent provide further insights on the metabolic activities and the environmental factors shaping these microbial communities. Both bacterial and archaeal diversity changed along the transect as well as with sediment depth, in line with the geochemical measurements. Beside the fact that it harbors an unexpected diversity of yet undescribed bacteria and archaea, this site is also a relevant model to investigate the link between ecological and abiotic dynamics in such instable hydrothermal environments. Our results provide evidence for the importance of transient geodynamic and hydrodynamic events in the dynamics and distribution of chemoautotrophic communities in the hydrothermally influenced sediments of Paleochori Bay

    Single cell genomics-based analysis of gene content and expression of prophages in a diffuse-flow deep-sea hydrothermal system

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Labonte, J. M., Pachiadaki, M., Fergusson, E., McNichol, J., Grosche, A., Gulmann, L. K., Vetriani, C., Sievert, S. M., & Stepanauskas, R. Single cell genomics-based analysis of gene content and expression of prophages in a diffuse-flow deep-sea hydrothermal system. Frontiers in Microbiology, 10, (2019): 1262, doi:10.3389/fmicb.2019.01262.Phage–host interactions likely play a major role in the composition and functioning of many microbiomes, yet remain poorly understood. Here, we employed single cell genomics to investigate phage–host interactions in a diffuse-flow, low-temperature hydrothermal vent that may be reflective of a broadly distributed biosphere in the subseafloor. We identified putative prophages in 13 of 126 sequenced single amplified genomes (SAGs), with no evidence for lytic infections, which is in stark contrast to findings in the surface ocean. Most were distantly related to known prophages, while their hosts included bacterial phyla Campylobacterota, Bacteroidetes, Chlorobi, Proteobacteria, Lentisphaerae, Spirochaetes, and Thermotogae. Our results suggest the predominance of lysogeny over lytic interaction in diffuse-flow, deep-sea hydrothermal vents, despite the high activity of the dominant Campylobacteria that would favor lytic infections. We show that some of the identified lysogens have co-evolved with their host over geological time scales and that their genes are transcribed in the environment. Functional annotations of lysogeny-related genes suggest involvement in horizontal gene transfer enabling host’s protection against toxic metals and antibacterial compounds.This work was supported by the U.S. National Science Foundation’s Dimensions of Biodiversity Program [OCE-1136488 (to RS), OCE-1136727 (to SMS) and OCE-1136451 (to CV)], as well as DEB-1441717 and OCE-1335810 (to RS), and the DOE JGI CSP project 1477

    Functions of height and width dimensions in the intertidal mussel, Mytilus californianus

    Get PDF
    Author Posting. © National Shellfisheries Association, 2008. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 27 (2008): 385-392, doi:10.2983/0730-8000(2008)27[385:FOHAWD]2.0.CO;2.A mussel's shell records its history of growth. We investigated variability in the size and shape of mussel shells of Mytilus californianus Conrad (1837) to test the hypothesis that the mussel shell provides information on the contemporary condition of the mussel. Two factors were associated with shape: an epithelial discoloration and the Sr/Ca in the shell nacre. Sr/Ca data distinguished the mussel populations as did a discriminate analysis that included the trace metal ratios; Sr/Ca, Mg/Ca, Mn/Ca, Ag/Ca, Cd/Ca, Ba/Ca, and Pb/Ca. Size varied independently of shape and was not associated with the two factors. However, a null model that describes the morphological variability in height and width suggests that mussel size also plays a central role in partitioning phenotypic variability. These analyses of contemporary factors coupled with analyses of morphological variability holds promise for addressing the functional roles of mussel height and width and what proportion of phenotypic variability can be attributed to environmental factors

    Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes : a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge

    Get PDF
    Author Posting. © Springer, 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Extremophiles 12 (2008): 627-640, doi:10.1007/s00792-008-0167-5.The bacterial and archaeal communities of three deep-sea hydrothermal vent systems located on the Mid-Atlantic Ridge (MAR; Rainbow, Logatchev and Broken Spur) were investigated using an integrated culture-dependent and independent approach. Comparative molecular phylogenetic analyses, using the 16S rRNA gene and the deduced amino acid sequences of the alpha and beta subunits of the ATP citrate lyase encoding genes were carried out on natural microbial communities, on an enrichment culture obtained from the Broken Spur chimney, and on novel chemolithoautotrophic bacteria and reference strains originally isolated from several different deep-sea vents. Our data showed that the three MAR hydrothermal vent chimneys investigated in this study host very different microbial assemblages. The microbial community of the Rainbow chimney was dominated by thermophilic, autotrophic, hydrogen-oxidizing, sulfur- and nitrate reducing Epsilonproteobacteria related to the genus Caminibacter. The detection of sequences related to sulfur-reducing bacteria and archaea (Archaeoglobus) indicated that thermophilic sulfate reduction might also be occurring at this site. The Logatchev bacterial community included several sequences related to mesophilic sulfur-oxidizing bacteria, while the archaeal component of this chimney was dominated by sequences related to the ANME-2 lineage, suggesting that anaerobic oxidation of methane may be occurring at this site. Comparative analyses of the ATP citrate lyase encoding genes from natural microbial communities suggested that Epsilonproteobacteria were the dominant primary producers using the reverse TCA cycle (rTCA) at Rainbow, while Aquificales of the genera Desulfurobacterium and Persephonella were prevalent in the Broken Spur chimney.This research was supported by NSF grants MCB 04-56676 (C.V.), OCE 03-27353 (C.V.), MCB 04-56689 (S.M.S.), a grant from the New Jersey Agricultural Experiment Station to C.V., and a NIH Ph.D. Training Program in Biotechnology Fellowship (NIH NIGMS 5 T32 GM08339) to J.V. M.H. was supported through a postdoctoral scholarship from the Woods Hole Oceanographic Institution

    Caminibacter mediatlanticus sp. nov., a thermophilic, hemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge

    No full text
    ) and pH 4?5 and 7?5 (optimum pH 5?5). Generation time under optimal conditions was 50 min. Growth occurred under chemolithoautotrophic conditions with H 2 as the energy source and CO 2 as the carbon source. Nitrate or sulfur was used as the electron acceptor, with resulting production of ammonium and hydrogen sulfide, respectively. Oxygen, thiosulfate, sulfite, selenate and arsenate were not used as electron acceptors. Growth was inhibited by the presence of acetate, lactate, formate and peptone. The G+C content of the genomic DNA was 25?6 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Caminibacter hydrogeniphilus and Caminibacter profundus (95?9 and 96?3 % similarity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Caminibacter, Caminibacter mediatlanticus sp. nov. The type strain is TB-2

    The Family Salinisphaeraceae

    No full text
    The family Salinisphaeraceae (Class Gammaproteobacteria, Order Salinisphaerales) comprises a single genus, Salinisphaera, and six species: S. shabanensis, S. hydrothermalis, S. dokdonensis, S. orenii, S. halophila, and S. japonica. All members of the family Salinisphaeraceae were isolated from marine/oceanic and high-salinity environments. These bacteria have coccoid or short rod morphologies and are halophilic or halotolerant. All known members of the family Salinisphaeraceae are heterotrophic, mesophilic aerobes, although S. hydrothermalis was shown to be a facultative chemolithoautotroph. Isolation and characterization of new members of the Salinisphaeraceae, as well as in-depth studies of the currently known species, will allow for a better understanding of this family.(undefined
    corecore