3,906 research outputs found
Reconstruction of semileptonically decaying beauty hadrons produced in high energy pp collisions
It is well known that in hadron decays with a single unreconstructible
final state particle, the decay kinematics can be solved up to a quadratic
ambiguity, without any knowledge of the hadron momentum. We present a
method to infer the momenta of hadrons produced in hadron collider
experiments using information from their reconstructed flight vectors. Our
method is strictly agnostic to the decay itself, which implies that it can be
validated with control samples of topologically similar decays to fully
reconstructible final states. A multivariate regression algorithm based on the
flight information provides a hadron momentum estimate with a resolution of
around 60% which is sufficient to select the correct solution to the quadratic
equation in around 70% of cases. This will improve the ability of hadron
collider experiments to make differential decay rate measurements with
semileptonic hadron decays.Comment: 18 pages, 17 figures. Updated version to be published in JHE
LHCb trigger streams optimization
The LHCb experiment stores around collision events per year. A
typical physics analysis deals with a final sample of up to events.
Event preselection algorithms (lines) are used for data reduction. Since the
data are stored in a format that requires sequential access, the lines are
grouped into several output file streams, in order to increase the efficiency
of user analysis jobs that read these data. The scheme efficiency heavily
depends on the stream composition. By putting similar lines together and
balancing the stream sizes it is possible to reduce the overhead. We present a
method for finding an optimal stream composition. The method is applied to a
part of the LHCb data (Turbo stream) on the stage where it is prepared for user
physics analysis. This results in an expected improvement of 15% in the speed
of user analysis jobs, and will be applied on data to be recorded in 2017.Comment: Submitted to CHEP-2016 proceeding
Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders
In future measurements of the dilepton () transverse momentum,
\Qt, at both the Tevatron and LHC, the achievable bin widths and the ultimate
precision of the measurements will be limited by experimental resolution rather
than by the available event statistics. In a recent paper the variable \at,
which corresponds to the component of \Qt\ that is transverse to the dilepton
thrust axis, has been studied in this regard. In the region, \Qt\ 30 GeV,
\at\ has been shown to be less susceptible to experimental resolution and
efficiency effects than the \Qt. Extending over all \Qt, we now demonstrate
that dividing \at\ (or \Qt) by the measured dilepton invariant mass further
improves the resolution. In addition, we propose a new variable, \phistarEta,
that is determined exclusively from the measured lepton directions; this is
even more precisely determined experimentally than the above variables and is
similarly sensitive to the \Qt. The greater precision achievable using such
variables will enable more stringent tests of QCD and tighter constraints on
Monte Carlo event generator tunes.Comment: 8 pages, 5 figures, 2 table
Technical note: Analytical formulae for the critical supersaturations and droplet diameters of CCN containing insoluble material
International audienceIn this paper, we consider the cloud drop activation of aerosol particles consisting of water soluble material and an insoluble core. Based on the Köhler theory, we derive analytical equations for the critical diameters and supersaturations of such particles. We demonstrate the use of the equations by comparing the critical supersaturations of particles composed of ammonium sulfate and insoluble substances with those of model organic particles with varying molecular sizes
Z boson transverse momentum spectrum from the lepton angular distributions
In view of recent discussions concerning the possibly limiting energy
resolution systematics on the measurement of the Z boson transverse momentum
distribution at hadron colliders, we propose a novel measurement method based
on the angular distributions of the decay leptons. We also introduce a
phenomenological parametrization of the transverse momentum distribution that
adapts well to all currently available predictions, a useful tool to quantify
their differences.Comment: 12 pages, 6 figure
Systematic review and meta-analysis of temozolomide in animal models of glioma:was clinical efficacy predicted?
Background:Malignant glioma is an aggressive tumour commonly associated with a dismal outcome despite optimal surgical and radio-chemotherapy. Since 2005 temozolomide has been established as first-line chemotherapy. We investigate the role of in vivo glioma models in predicting clinical efficacy.Methods:We searched three online databases to systematically identify publications testing temozolomide in animal models of glioma. Median survival and number of animals treated were extracted and quality was assessed using a 12-point scale; random effects meta-analysis was used to estimate efficacy. We analysed the impact of study design and quality and looked for evidence of publication bias.Results:We identified 60 publications using temozolomide in models of glioma, comprising 2443 animals. Temozolomide prolonged survival by a factor of 1.88 (95% CI 1.74-2.03) and reduced tumour volume by 50.4% (41.8-58.9) compared with untreated controls. Study design characteristics accounted for a significant proportion of between-study heterogeneity, and there was evidence of a significant publication bias.Conclusion:These data reflect those from clinical trials in that temozolomide improves survival and reduces tumour volume, even after accounting for publication bias. Experimental in vivo glioma studies of temozolomide differ from those of other glioma therapies in their consistent efficacy and successful translation into clinical medicine
Electroweak Gauge-Boson Production at Small q_T: Infrared Safety from the Collinear Anomaly
Using methods from effective field theory, we develop a novel, systematic
framework for the calculation of the cross sections for electroweak gauge-boson
production at small and very small transverse momentum q_T, in which large
logarithms of the scale ratio M_V/q_T are resummed to all orders. These cross
sections receive logarithmically enhanced corrections from two sources: the
running of the hard matching coefficient and the collinear factorization
anomaly. The anomaly leads to the dynamical generation of a non-perturbative
scale q_* ~ M_V e^{-const/\alpha_s(M_V)}, which protects the processes from
receiving large long-distance hadronic contributions. Expanding the cross
sections in either \alpha_s or q_T generates strongly divergent series, which
must be resummed. As a by-product, we obtain an explicit non-perturbative
expression for the intercept of the cross sections at q_T=0, including the
normalization and first-order \alpha_s(q_*) correction. We perform a detailed
numerical comparison of our predictions with the available data on the
transverse-momentum distribution in Z-boson production at the Tevatron and LHC.Comment: 34 pages, 9 figure
Study of charmonium production in b -hadron decays and first evidence for the decay Bs0
Using decays to φ-meson pairs, the inclusive production of charmonium states in b-hadron decays is studied with pp collision data corresponding to an integrated luminosity of 3.0 fb−1, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. Denoting byBC ≡ B(b → C X) × B(C → φφ) the inclusive branching fraction of a b hadron to a charmonium state C that decays into a pair of φ mesons, ratios RC1C2 ≡ BC1 /BC2 are determined as Rχc0ηc(1S) = 0.147 ± 0.023 ± 0.011, Rχc1ηc(1S) =0.073 ± 0.016 ± 0.006, Rχc2ηc(1S) = 0.081 ± 0.013 ± 0.005,Rχc1 χc0 = 0.50 ± 0.11 ± 0.01, Rχc2 χc0 = 0.56 ± 0.10 ± 0.01and Rηc(2S)ηc(1S) = 0.040 ± 0.011 ± 0.004. Here and below the first uncertainties are statistical and the second systematic.Upper limits at 90% confidence level for the inclusive production of X(3872), X(3915) and χc2(2P) states are obtained as RX(3872)χc1 < 0.34, RX(3915)χc0 < 0.12 andRχc2(2P)χc2 < 0.16. Differential cross-sections as a function of transverse momentum are measured for the ηc(1S) andχc states. The branching fraction of the decay B0s → φφφ is measured for the first time, B(B0s → φφφ) = (2.15±0.54±0.28±0.21B)×10−6. Here the third uncertainty is due to the branching fraction of the decay B0s → φφ, which is used for normalization. No evidence for intermediate resonances is seen. A preferentially transverse φ polarization is observed.The measurements allow the determination of the ratio of the branching fractions for the ηc(1S) decays to φφ and p p asB(ηc(1S)→ φφ)/B(ηc(1S)→ p p) = 1.79 ± 0.14 ± 0.32
- …
