160 research outputs found
Propofol in neonates causes a dose-dependent profound and protracted decrease in blood pressure
Aim: To analyse the effects of different propofol starting doses as premedication for endotracheal intubation on blood pressure in neonates. Methods: Neonates who received propofol starting doses of 1.0 mg/kg (n = 30), 1.5 mg/kg (n = 23) or 2.0 mg/kg (n = 26) as part of a previously published dose-finding study were included in this analysis. Blood pressure in the 3 dosing groups was analysed in the first 60 minutes after start of propofol. Results: Blood pressure declined after the start of propofol in all 3 dosing groups and was not restored 60 minutes after the start of propofol. The decline in b
Performance of the LHCb vertex locator
The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 μm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 μm for translations in the plane transverse to the beam. A primary vertex resolution of 13 μm in the transverse plane and 71 μm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c
Precision luminosity measurements at LHCb
Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for √s = 2.76, 7 and 8 TeV (proton-proton collisions) and for √sNN = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at √s = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01
The variety of isotopes in cosmic rays allows us to study different aspects
of the processes that cosmic rays undergo between the time they are produced
and the time of their arrival in the heliosphere. In this paper we present
measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be)
and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The
measurements are based on the data collected by the Alpha Magnetic
Spectrometer, AMS-01, during the STS-91 flight in 1998 June.Comment: To appear in ApJ. 12 pages, 11 figures, 6 table
Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip
The ATLAS Collaboration will upgrade its semiconductor pixel tracking
detector with a new Insertable B-layer (IBL) between the existing pixel
detector and the vacuum pipe of the Large Hadron Collider. The extreme
operating conditions at this location have necessitated the development of new
radiation hard pixel sensor technologies and a new front-end readout chip,
called the FE-I4. Planar pixel sensors and 3D pixel sensors have been
investigated to equip this new pixel layer, and prototype modules using the
FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN
SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test
results are presented, including charge collection efficiency, tracking
efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS
Search for antihelium in cosmic rays
The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle
Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320
and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity
range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper
limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure
Protons in near earth orbit
The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured
by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at
an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is
parameterized by a power law. Below the geomagnetic cutoff a substantial second
spectrum was observed concentrated at equatorial latitudes with a flux ~ 70
m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated
trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01
The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics
experiment that will study cosmic rays in the to range and will be installed on the International Space Station
(ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the
space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected
cosmic ray triggers. Part of the \emph{Mir} space station was within the
AMS-01 field of view during the four day \emph{Mir} docking phase of this
flight. We have reconstructed an image of this part of the \emph{Mir} space
station using secondary and emissions from primary cosmic rays
interacting with \emph{Mir}. This is the first time this reconstruction was
performed in AMS-01, and it is important for understanding potential
backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor
stylistic and grammer change
- …