520 research outputs found

    BNIP3 supports melanoma cell migration and vasculogenic mimicry by orchestrating the actin cytoskeleton

    Get PDF
    BNIP3 is an atypical BH3-only member of the BCL-2 family of proteins with reported pro-death as well as pro-autophagic and cytoprotective functions, depending on the type of stress and cellular context. In line with this, the role of BNIP3 in cancer is highly controversial and increased BNIP3 levels in cancer patients have been linked with both good as well as poor prognosis. In this study, using small hairpin RNA (shRNA) lentiviral transduction to stably knockdown BNIP3 (BNIP3-shRNA) expression levels in melanoma cells, we show that BNIP3 supports cancer cell survival and long-term clonogenic growth. Although BNIP3-shRNA increased mitochondrial mass and baseline levels of reactive oxygen species production, which are features associated with aggressive cancer cell behavior, it also prevented cell migration and completely abolished the ability to form a tubular-like network on matrigel, a hallmark of vasculogenic mimicry (VM). We found that this attenuated aggressive behavior of these melanoma cells was underscored by severe changes in cell morphology and remodeling of the actin cytoskeleton associated with loss of BNIP3. Indeed, BNIP3-silenced melanoma cells displayed enhanced formation of actin stress fibers and membrane ruffles, while lamellopodial protrusions and filopodia, tight junctions and adherens junctions were reduced. Moreover, loss of BNIP3 resulted in re-organization of focal adhesion sites associated with increased levels of phosphorylated focal adhesion kinase. Remarkably, BNIP3 silencing led to a drop of the protein levels of the integrin-associated protein CD47 and its downstream signaling effectors Rac1 and Cdc42. These observations underscore that BNIP3 is required to maintain steady-state levels of intracellular complexes orchestrating the plasticity of the actin cytoskeleton, which is integral to cell migration and other vital processes stimulating cancer progression. All together these results unveil an unprecedented pro-tumorigenic role of BNIP3 driving melanoma cell's aggressive features, like migration and VM

    Satellite downlink scheduling problem: A case study

    Get PDF
    The synthetic aperture radar (SAR) technology enables satellites to efficiently acquire high quality images of the Earth surface. This generates significant communication traffic from the satellite to the ground stations, and, thus, image downlinking often becomes the bottleneck in the efficiency of the whole system. In this paper we address the downlink scheduling problem for Canada's Earth observing SAR satellite, RADARSAT-2. Being an applied problem, downlink scheduling is characterised with a number of constraints that make it difficult not only to optimise the schedule but even to produce a feasible solution. We propose a fast schedule generation procedure that abstracts the problem specific constraints and provides a simple interface to optimisation algorithms. By comparing empirically several standard meta-heuristics applied to the problem, we select the most suitable one and show that it is clearly superior to the approach currently in use.Comment: 23 page

    The SEURAT-1 Approach towards Animal Free Human Safety Assessment

    Get PDF
    SEURAT-1 is a European public-private research consortium that is working towards animal-free testing of chemical compounds and the highest level of consumer protection. A research strategy was formulated based on the guiding principle to adopt a toxicological mode-of-action framework to describe how any substance may adversely affect human health. The proof of the initiative will be in demonstrating the applicability of the concepts on which SEURAT-1 is built on three levels: (i) Theoretical prototypes for adverse outcome pathways are formulated based on knowledge already available in the scientific literature on investigating the toxicological modes-of-action leading to adverse outcomes (addressing mainly liver toxicity); (ii) adverse outcome pathway descriptions are used as a guide for the formulation of case studies to further elucidate the theoretical model and to develop integrated testing strategies for the prediction of certain toxicological effects (i.e., those related to the adverse outcome pathway descriptions); (iii) further case studies target the application of knowledge gained within SEURAT-1 in the context of safety assessment. The ultimate goal would be to perform ab initio predictions based on a complete understanding of toxicological mechanisms. In the near-term, it is more realistic that data from innovative testing methods will support read-across arguments. Both scenarios are addressed with case studies for improved safety assessment. A conceptual framework for a rational integrated assessment strategy emerged from designing the case studies and is discussed in the context of international developments focusing on alternative approaches for evaluating chemicals using the new 21st century tools for toxicity testing

    Tau PET and relative cerebral blood flow in Dementia with Lewy bodies: A PET study

    Get PDF
    Purpose: Alpha-synuclein often co-occurs with Alzheimer’s disease (AD) pathology in Dementia with Lewy Bodies (DLB). From a dynamic [18F]flortaucipir PET scan we derived measures of both tau binding and relative cerebral blood flow (rCBF). We tested whether regional tau binding or rCBF differed between DLB patients and AD patients and controls and examined their association with clinical characteristics of DLB. / Methods: Eighteen patients with probable DLB, 65 AD patients and 50 controls underwent a dynamic 130-minute [18F]flortaucipir PET scan. DLB patients with positive biomarkers for AD based on cerebrospinal fluid or amyloid PET were considered as DLB with AD pathology(DLB-AD+). Receptor parametric mapping(cerebellar gray matter reference region) was used to extract regional binding potential (BPND) and R1, reflecting (AD-specific) tau pathology and rCBF, respectively. First, we performed regional comparisons of [18F]flortaucipir BPND and R1 between diagnostic groups. In DLB patients only, we performed regression analyses between regional [18F]flortaucipir BPND, R1 and performance on ten neuropsychological tests. / Results: Regional [18F]flortaucipir BPND in DLB was comparable with tau binding in controls (p>0.05). Subtle higher tau binding was observed in DLB-AD+ compared to DLB-AD- in the medial temporal and parietal lobe (both p<0.05). Occipital and lateral parietal R1 was lower in DLB compared to AD and controls (all p<0.01). Lower frontal R1 was associated with impaired performance on digit span forward (standardized beta, stβ=0.72) and category fluency (stβ=0.69) tests. Lower parietal R1 was related to lower delayed (stβ=0.50) and immediate (stβ=0.48) recall, VOSP number location (stβ=0.70) and fragmented letters (stβ=0.59) scores. Lower occipital R1 was associated to worse performance on VOSP fragmented letters (stβ=0.61), all p<0.05. / Conclusion: The amount of tau binding in DLB was minimal and did not differ from controls. However, there were DLB-specific occipital and lateral parietal relative cerebral blood flow reductions compared to both controls and AD patients. Regional rCBF, but not tau binding, was related to cognitive impairment. This indicates that assessment of rCBF may give more insight into disease mechanisms in DLB than tau PET

    Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition

    Get PDF
    Tools for rapid and efficient transgenesis in "safe harbor" loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs). We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE) in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE, we successfully incorporated several transgenes useful for lineage identification, cell toxicity studies, and gene overexpression to study the hepatocyte lineage. However, we observed unexpected and variable transgene expression inhibition in vitro, due to DNA methylation and other unknown mechanisms, both in undifferentiated hESC and differentiating hepatocytes. Therefore, the AAVS1 locus cannot be considered a universally safe harbor locus for reliable transgene expression in vitro, and using it for transgenesis in hPSC will require careful assessment of the function of individual transgenes

    Constraint solving in uncertain and dynamic environments - a survey

    Get PDF
    International audienceThis article follows a tutorial, given by the authors on dynamic constraint solving at CP 2003 (Ninth International Conference on Principles and Practice of Constraint Programming) in Kinsale, Ireland. It aims at offering an overview of the main approaches and techniques that have been proposed in the domain of constraint satisfaction to deal with uncertain and dynamic environments

    Integrative and perturbation-based analysis of the transcriptional dynamics of TGFβ/BMP system components in transition from embryonic stem cells to neural progenitors

    Get PDF
    Cooperative actions of extrinsic signals and cell-intrinsic transcription factors alter gene regulatory networks enabling cells to respond appropriately to environmental cues. Signaling by transforming growth factor type β (TGFβ) family ligands (eg, bone morphogenetic proteins [BMPs] and Activin/Nodal) exerts cell-type specific and context-dependent transcriptional changes, thereby steering cellular transitions throughout embryogenesis. Little is known about coordinated regulation and transcriptional interplay of the TGFβ system. To understand intrafamily transcriptional regulation as part of this system's actions during development, we selected 95 of its components and investigated their mRNA-expression dynamics, gene-gene interactions, and single-cell expression heterogeneity in mouse embryonic stem cells transiting to neural progenitors. Interrogation at 24 hour intervals identified four types of temporal gene transcription profiles that capture all stages, that is, pluripotency, epiblast formation, and neural commitment. Then, between each stage we performed esiRNA-based perturbation of each individual component and documented the effect on steady-state mRNA levels of the remaining 94 components. This exposed an intricate system of multilevel regulation whereby the majority of gene-gene interactions display a marked cell-stage specific behavior. Furthermore, single-cell RNA-profiling at individual stages demonstrated the presence of detailed co-expression modules and subpopulations showing stable co-expression modules such as that of the core pluripotency genes at all stages. Our combinatorial experimental approach demonstrates how intrinsically complex transcriptional regulation within a given pathway is during cell fate/state transitions

    Evaluation of the impact of iPSC differentiation protocols on transcriptomic signatures.

    Get PDF
    Human induced pluripotent stem cells (iPSC) have the potential to produce desired target cell types in vitro and allow for the high-throughput screening of drugs/chemicals at population level thereby minimising the cost of drug discovery and drug withdrawals after clinical trials. There is a substantial need for the characterisation of the iPSC derived models to better understand and utilise them for toxicological relevant applications. In our study, iPSC (SBAD2 or SBAD3 lines obtained from StemBANCC project) were differentiated towards toxicologically relevant cell types: alveolar macrophages, brain capillary endothelial cells, brain cells, endothelial cells, hepatocytes, lung airway epithelium, monocytes, podocytes and renal proximal tubular cells. A targeted transcriptomic approach was employed to understand the effects of differentiation protocols on these cell types. Pearson correlation and principal component analysis (PCA) separated most of the intended target cell types and undifferentiated iPSC models as distinct groups with a high correlation among replicates from the same model. Based on PCA, the intended target cell types could also be separated into the three germ layer groups (ectoderm, endoderm and mesoderm). Differential expression analysis (DESeq2) presented the upregulated genes in each intended target cell types that allowed the evaluation of the differentiation to certain degree and the selection of key differentiation markers. In conclusion, these data confirm the versatile use of iPSC differentiated cell types as standardizable and relevant model systems for in vitro toxicology

    Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control

    Get PDF
    This paper presents a branch-and-lift algorithm for solving optimal control problems with smooth nonlinear dynamics and potentially nonconvex objective and constraint functionals to guaranteed global optimality. This algorithm features a direct sequential method and builds upon a generic, spatial branch-and-bound algorithm. A new operation, called lifting, is introduced, which refines the control parameterization via a Gram-Schmidt orthogonalization process, while simultaneously eliminating control subregions that are either infeasible or that provably cannot contain any global optima. Conditions are given under which the image of the control parameterization error in the state space contracts exponentially as the parameterization order is increased, thereby making the lifting operation efficient. A computational technique based on ellipsoidal calculus is also developed that satisfies these conditions. The practical applicability of branch-and-lift is illustrated in a numerical example. © 2013 Springer Science+Business Media New York
    corecore