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Abstract.

This article follows a tutorial, given by the authors on dynamic constraint solving
at CP 2003 (Ninth International Conference on Principles and Practice of Constraint
Programming) in Kinsale, Ireland (Verfaillie and Jussien, 2003).

It aims at offering an overview of the main approaches and techniques that have
been proposed in the domain of constraint satisfaction to deal with uncertain and
dynamic environments.

Keywords: Constraint Satisfaction Problem, Uncertainty, Change, Stability, Ro-
bustness, Flexibility

1. Why dynamic constraint solving?

1.1. A FIRST GLOBAL VIEW

The constraint satisfaction problem (CSP) (Mackworth, 1992; Dechter,
1992) framework has been proposed as a generic way of modelling
discrete constrained decision problems, for which generic deduction
and search algorithms can be defined. The framework, as well as the
associated algorithms, assume that all the components of the instance
to consider (variables, domains of possible values, constraints to sat-
isfy) are completely known before modelling and solving it and do not
change either during or after modelling and solving. However, it has
been observed for a long time that such assumptions do not hold in
many situations, specifically each time one has to deal with uncertain
and dynamic environments. See for example (Montanari and Rossi,
1997).

1.2. THE EXAMPLE OF ONLINE PLANNING

Because online planning and scheduling is a rich context where uncer-
tainties and changes cannot be easily avoided, we propose to use it as

';ﬁ © 2005 Kluwer Academic Publishers. Printed in the Netherlands.
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Figure 1. Architecture of the high-level control system of a physical system.

an introductory example. Figure 1 shows the classical architecture of
the high-level control system of either an autonomous artefact (robot,
aircraft, satellite, etc.) or a large system (production, distribution, traf-
fic, etc.). See for example (Alami et al., 1998; Muscettola et al., 1998b).
We can observe two main blocks:

1. the real world, which includes the controlled physical system itself,
its environment, as well as its users and other related entities which
may be either human or artificial;

2. the high-level control system.

Observe that these blocks are both plunged into time and can be seen
as two interconnected concurrent processes. The term online, widely
used in the automatic control community, refers to such a situation: a
control system running concurrently with the real world. The control
system is itself composed of three main parts:

1. a reactive part, composed of a supervisor and an ezecutive. Modules
in this part are designed to react within a strictly limited time to
events coming from either the real world or the control system itself.
One usually speaks of (hard) real-time modules;

2. an online deliberative part, composed of three modules: problem
definition, problem solving, and solution maintenance. Even if tem-
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poral constraints may limit the time taken by the reasoning activ-
ities of these modules, these constraints are generally softer than
the ones of the reactive part. One often speaks of soft real-time
modules;

3. an offline deliberative part, only composed of a problem modelling
and solving module. A priori, no temporal constraints or only very
soft ones limit the time taken by the reasoning activities of this
module.

If we consider now these modules one after the other, we can note
that:

— the supervisor can be seen, as suggested by its name, as the core
of the control system, in charge of activating and controlling its
reasoning;

— the online problem definition module is in charge of modifying
when needed the definition of the problem(s) to solve, as a function
of the information coming from the real world via the supervisor;

— the online problem solving module is in charge of solving the prob-
lem(s) defined by the previous module, whenever the supervisor
requires it; to be able to meet the requirements of the supervisor,
it is composed of a search control submodule which controls in
turn a set of parameterised deduction and search algorithms;

— the online solution maintenance module is in charge of the main-
tenance of the solution(s) produced by the previous module;

— the erecutive can be seen as the interface between the control
system and the physical one, in charge of the execution of the
solution(s) produced and memorised by the previous modules;

— finally, the offline problem modelling and solving module can be
seen as a form of problem preprocessing, which may simplify and
enhance online problem solving.

One of the difficulties of problem modelling and solving in such a
context comes from the fact that, on the one hand, the knowledge about
the real world is often incomplete, imprecise and uncertain and, on the
other hand, the real world and the knowledge about it may change
during or after modelling and solving.

To be more concrete, consider a travel management system (TMS),
embedded in a car, in charge of the management of all the features of
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a long travel: route, stops, reservations, rendezvous, car refuelling and
maintenance, etc. The physical system is the car. The user is the car
driver. Its physical environment is the road, the traffic, the weather, etc.
Other entities are hotels, restaurants, garages, other people and similar
TMSs. Uncertainty may come from the car (actual state of its compo-
nents), from the environment (actual state of the road, future traffic
and weather), and from the other entities (actual availability). Changes
may occur at any time from the driver herself (changes in her goals or
in her current plan), from the car (unexpected breakdowns), from the
environment (traffic jams), and from the other entities (unavailability,
rendezvous cancellations).

1.3. VARIOUS CONTEXTS

Handling uncertainties and changes is necessary not only in online
planning and scheduling, but also in many other contexts. Some of
them appear in real-world applications, such as:

— online computer vision, failure diagnosis, and situation tracking,
with uncertainties about the actual state of what is observed (for
example, the actual state of the components of a physical system)
and with changes that may occur at any time in the current set of
observations (for example, occurrence of a failure symptom);

— computer-aided system design or configuration, with uncertainties
about the environment in which the designed system will be used,
about the actual properties of the chosen components, and about
the actual physical constraints to meet, and with changes that may
occur either in user requirements or in designer choices (Lottaz
et al., 1999; O’Sullivan, 2002);

— user interface management, with changes that may occur at any
time due to actions on the interface by the user or the software
(Borning and Freeman-Benson, 1998);

— interactive or distributed problem solving, with uncertainties about
the decisions of the user (in interactive applications) or of the other
entities (in distributed applications) and with changes that may
result from such decisions (Yokoo et al., 1998).

Furthermore, other ones appear in the process of problem modelling
or solving, independently of any application domain, such as:

— interactive problem specification and constraint program debugging,
with changes that may result from the problem specification or
modelling that the user chooses (Deransart et al., 2000);
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— any form of unordered local search, such as dynamic backtracking
(Ginsberg, 1993) or decision repair (Jussien and Lhomme, 2002),
with changes that come from variable assignments or unassign-
ments.

2. Survey contents

In Section 3, we list the main requirements that appear when handling
uncertainties and changes in constraint solving. In Section 4, we present
the frameworks that have been proposed to represent dynamic and
uncertain constraint satisfaction problems. Then, in Sections 5 and 6,
we describe the two classes of methods that have been proposed to deal
with uncertainties and changes: reactive methods which aim at reusing
solutions or reasoning, and proactive ones which aim at producing ro-
bust or flexible solutions. In Section 7, we underline interesting research
directions. Finally, in Section 8, we consider connections with studies
on related frameworks.

Note that studies have been carried out for many years in the plan-
ning and scheduling domain on the ways of handling correctly and
efficiently uncertainties and changes. Without claiming exhaustivity,
we will refer to some of them.

3. Main associated requirements

In uncertain and dynamic situations, four kinds of requirements appear,
even if only some of them may be present in a specific application:

1. the first one is to limit as much as possible the need for successive
online problem solvings, because online problem solving may be
consuming in terms of computing time and resources and disturbing
in terms of solutions: changes in produced solutions may become
too frequent. For example, in the TMS application, the driver does
not want her route or her schedule be too frequently changed,
because of successive small changes in the travelling conditions;

2. the second one is to limit as much as possible changes in the pro-
duced solutions when the first approach failed, i.e. when the pre-
vious solution is no more valid and producing online a new one
is necessary. This is because changes that are too important are
undesirable. In the TMS application, the driver does not want her
route and her schedule be completely changed, because of a small
change in the travelling conditions;
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3. the third one is to limit as much as possible the computing time and
resources that are necessary for online problem solving, again when
the first approach failed. This is because, in many applications,
the utility of a solution decreases with the time of its delivery.
For example, in online planning and scheduling applications, the
time taken for reasoning may be lost for acting. Moreover, in some
applications, the utility of a solution may become null after a given
time. In the TMS application, telling the driver to leave a highway
at a given exit is useless if she gets the information after having
passed by this exit;

4. the fourth one is to keep producing consistent and optimal solu-
tions. Consistency is necessary when physical constraints and hard
user requirements are concerned. Optimality is desirable even in an
online problem solving context. Always, in the TMS application,
the driver does not wish to see her route and her schedule com-
pletely degraded after a small change in the travel conditions. She
wishes also that better conditions be exploited to produce better
solutions. Note that this last requirement may interfere with the
second one: possible contradiction between optimality and stability
of a solution.

4. Modelling frameworks

The notion of dynamic constraint satisfaction has been first introduced
in (Dechter and Dechter, 1988). A dynamic constraint satisfaction prob-
lem (DCSP) is a sequence of CSPs, each one resulting from some
changes in the definition of the previous one. These changes may af-
fect any component in the problem definition: variables (addings or
removals), domains (changes in the intensional definition, value addings
or removals in case of extensional definition), constraints (addings or
removals), constraint scopes (variable addings or removals), or con-
straint definitions (changes in the intensional definition, tuple addings
or removals in case of extensional definition). Because domains can
be seen as unary constraints, because variables are implicitly added
or removed with all the constraints that apply to them, and because
any change in a component can be seen as a removal followed by an
adding, all these changes can be basically expressed in terms of con-
straint addings or removals. More formally, a DCSP is thus a sequence
{Py,Pr,...,P;,...,P,} where, for each i, 1 <i < n, P; is a CSP, Cq;
is a set of added constraints, C'r; is a set of removed constraints, such
that Cr; C Pi_1, and P; = P;,_1 + Ca; — Cr;. Note immediately that
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this definition is extremely general. Because nothing prevents Cr; from
being the set of constraints in P;_1, it covers any sequence of CSPs.
In fact, it is implicitly assumed that changes are limited with regard
to the problem definition: only a small fraction of the constraints are
added or removed at each step 1.

This framework must not be mistaken for extensions of the basic
CSP framework that have been proposed to capture more easily static
real-world problems, such as:

— the dynamic constraint satisfaction problem framework proposed
in (Mittal and Falkenhainer, 1990), renamed conditional constraint
satisfaction problem (CCSP) in (Sabin and Freuder, 1998), and
studied in (Bowen and Bahler, 1991; Sabin and Freuder, 1996;
Sabin and Freuder, 1999; Soininen et al., 1999; Gelle and Faltings,
2003; Sabin et al., 2003). The basic objective of the CCSP frame-
work is to model problems whose solutions do not all have the
same structure, i.e. do not all involve the same set of variables and
constraints. Such a situation occurs when dealing with product
configuration or design problems, because the physical systems
that can meet a set of user requirements do not all involve the
same components. More generally, it occurs when dealing with
any synthesis problem, such as design, configuration, planning,
scheduling, etc. In a CCSP, the set of variables is divided into a set
of mandatory variables and a set of optional ones. The set of con-
straints is also divided into a set of compatibility constraints and a
set of activity constraints. Compatibility constraints are classical
constraints. Activity constraints define the conditions of activation
of the optional variables as a function of the current assignment of
other mandatory or optional variables. Constraints are activated
only if their variables are activated too. When solving a CCSP,
the structure of the problem (activated variables and constraints)
may change as a function of the current assignment. Thus, a CCSP
can be considered as a particular case of DCSP where all the
possible changes are defined by the activity constraints. However,
the methods that have been proposed so far for dealing with DCSP
and with CCSP are very different from each other;

— the open constraint satisfaction problem framework (OCSP) pro-
posed in (Faltings and Macho-Gonzalez, 2002), named interactive
constraint satisfaction problem in (Lamma et al., 1999). In an
OCSP, the allowed values in domains, as well as the allowed tuples
in relations, may not be all known when starting a search for a
solution. They may be acquired online when no solution has been
found with the currently known values and tuples. Such a situation
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occurs each time the acquisition of information about domains and
relations is a costly process that needs either heavy computation
or requests to distant sites. Thus, an OCSP can be considered as
a particular case of DCSP where all the possible changes result in
extension of the domains and relations.

The DCSP framework also differs from frameworks that aim at in-
cluding in the problem definition the available knowledge about possible
changes from the real world, such as:

— the mized constraint satisfaction problem framework (MCSP) pro-
posed in (Fargier et al., 1996) to model decision problems under
uncertainty about the actual state of the real world. In an MCSP,
variables are divided into controllable variables (decision variables)
that are under the control of the decisional agent and uncontrol-
lable variables (state variables) that are not under its control. In
such a framework, a basic request may be to build a decision (an
assignment of the decision variables) that is consistent whatever
the state of the world (the assignment of the state variables) is;

— the probabilistic constraint satisfaction problem framework (PCSP)
proposed in (Fargier and Lang, 1993) to model decision problems
under uncertainty about the presence of constraints. In a PCSP,
a probability of presence in the real world is associated with each
constraint. In such a framework, a basic request may be to produce
an assignment that maximises its probability of consistency in
the real world. A PCSP is a particular case of valued constraint
satisfaction problem (VCSP) (Schiex et al., 1995; Bistarelli et al.,
1999);

— the stochastic constraint satisfaction problem framework (SCSP)
proposed in (Walsh, 2002) to model decision problems under un-
certainty about the actual state of the real world, the same way as
the MCSP framework. The SCSP framework is inspired from the
stochastic satisfiability problem (SSAT) (Littman et al., 2001). As
in an MCSP, variables are, in an SCSP, divided into controllable
ones (decision variables) and uncontrollable ones (state variables).
The main difference from an MCSP is that a probability distribu-
tion is associated with the domain of each state variable. Another
difference is that requests can freely alternate state and decision
variables. In such a framework, a basic request may be, as in
the PCSP framework, to build a decision (an assignment of the
decision variables) that maximises its probability of consistency in
the real world;
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— the branching constraint satisfaction problem framework (BCSP)
proposed in (Fowler and Brown, 2000) to model sequential deci-
sion problems under uncertainty about the arrival of new elements
(objects, tasks ...). In a BCSP, at each step, present variables
are assigned when possible, taking into account variables that will
be added to the problem definition. A utility is associated with
each assigned variable. At each step, a probability of addition is
associated with each absent variable. The request is, at each step,
to assign the added variable a value that maximises the global
expected utility. In (Fowler and Brown, 2003), a BCSP is viewed
as a particular case of Markov decision process (Puterman, 1994).

Note also the difference from problems that result from the mod-
elling of planning, scheduling, diagnosis, or situation tracking problems
as CSPs. Although these problems are considered by some authors as
dynamic ones (Miguel and Shen, 2003), they can also be considered as
static ones because all the possible changes in the real world (future
or past) can be modelled in a unique static CSP. A planning problem,
without uncertainty about the initial state and the action effects, can
indeed be modelled as a static CSP. See for example (van Beek and
Chen, 1999). In case of uncertainty, it can be modelled as a MCSP
or SCSP if knowledge about the possible changes is available at the
planning time, or as a DCSP otherwise.

We already observed that the DCSP framework is very general,
in that it assumes nothing about the changes that may occur. No
information must be provided by the modeller about their nature or
their absolute or relative likelihood of occurrence. Changes may be
completely unexpected. For example, in the TMS application, this is
the case of a serious breakdown on a new car, which is usually not
taken into account in the planning process, because it is too rare to
influence the decision, unless a travel across a wide desert is planned.
This framework is the basis of the so-called reactive approaches that
are presented in Section 5.

On the other hand, frameworks such as MCSP, PCSP, SCSP, or
BCSP are more restrictive, but richer, in that they assume that the
modeller provides the system with information about the possible
changes and sometimes about their absolute or relative likelihood of
occurrence. For example, in the TMS application, this is the case with
future weather and traffic for which forecast or statistical models may
be available via connection to distant information sites and may in-
fluence the decision. These frameworks are the basis of the so-called
proactive approaches that are presented in Section 6.

article-verfaillie-jussien-2.tex; 12/02/2005; 18:29; p.9



10

5. Reactive approaches

5.1. BASIC PRINCIPLES

Under the term reactive, we gather all the methods that use no knowl-
edge of the possible changes. This does not mean that these methods
do not try to anticipate the possible changes, for example by recording
when solving some potentially useful information. This only means that
they use no information about the possible directions of the future
changes. The drawback of this absence of knowledge may be a lack of
robustness of the produced solutions. The advantage may be, on the
contrary, an ability to react to any kind of change.

The basic principle of these methods, when facing a new problem
after a change in the problem definition, is to try reusing as much as
possible what has been produced by previous problem solvings. Now, if
we review what can be produced when solving a problem, we get four
kinds of information:

1. local consistency or inconsistency of partial assignments, according
to the used level of local consistency;

2. global consistency or inconsistency of partial assignments, i.e. the
ability or not to be extended into solutions;

3. consistency or inconsistency of complete assignments, i.e. the fact
of being a solution or not;

4. problem consistency or inconsistency, i.e. the global consistency or
inconsistency of the empty assignment.

Note the symmetric behaviour of consistency and inconsistency in-
formation with regard to problem relaxation and restriction, i.e. con-
straint removal and adding. Consistency information is preserved by
problem relaxation (what was consistent remains consistent), but in-
consistency information is not (what was inconsistent may either re-
main inconsistent or become consistent). Conversely, inconsistency in-
formation is preserved by problem restriction, but consistency informa-
tion is not. In case of simultaneous or sequential problem relaxation and
restriction, for example in case of a change in the definition of a con-
straint invalidating the current solution, everything is lost (consistency
and inconsistency information).

Roughly speaking, solution reuse techniques (sections 5.2 and 5.3)
try reusing consistency information, whereas reasoning reuse techniques
(sections 5.4 and 5.5) try reusing inconsistency information. Obviously,
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hybrid techniques, which try reusing both consistency and inconsis-
tency information, are possible (section 5.6). From previous obser-
vations related to problem relaxation and restriction, we can deduce
that the challenge of solution reuse techniques is to deal with problem
restriction (nothing has to be done in case of relaxation), whereas the
one of reasoning reuse techniques is to deal with problem relaxation.

5.2. SOLUTION REUSE TECHNIQUES

Solution reuse techniques deal with situations where (i) the previous
problem P has been solved and proved to be consistent, (ii) a solution
S of P has been produced and recorded, (iii) a change occurred in
the definition of P, resulting in a new problem P’, but, (iv) due to
some problem restriction, S is no longer a solution. Note that, if P’
is a relaxation of P, S is obviously solution of P and P’. The basic
assumption of solution reuse techniques is that, because P’ is close to
P, a solution S’ of P’ can be reasonably searched for in the vivinity
of S. If this assumption is correct, this approach favours both search
efficiency and solution stability, i.e. the second and the third of the
above requirements (see Section 3). It is however easy to build coun-
terexamples where a small change in the problem definition results in a
minimum distance (Hamming distance for example, i.e. the number of
different variable assignments) between a solution of P and a solution
of P’ that is as high as required. As confirmed by experiments, such
an approach works in most cases, but may become sometimes very
inefficient. Although every classification is arguable, we can distinguish
in the literature four kinds of techniques of this type:

1. tree search-based methods. The most immediate way of reusing
a previous solution in the context of depth-first tree search al-
gorithms, is to use it as a heuristics. In the new tree search, for
each variable, the value assigned to it in the previous solution is
first chosen. This is for example what is done in (Hentenryck and
Provost, 1991). It is however well known that a depth-first tree
search does not explore the space of possible assignments according
to an increasing distance to the first heuristic assignment. So, using
a limited discrepancy search algorithm (Harvey and Ginsberg, 1995)
with an increasing limit is certainly more appropriate in such a
context.

2. local search-based methods. Local search algorithms are certainly
those that fit the best a dynamic context. The previous solution can
simply be used as a starting assignment for the new local search.
Because local search is basically a repair process that tries to adapt

article-verfaillie-jussien-2.tex; 12/02/2005; 18:29; p.11



12

an assignment to a set of constraints, there is no difference, from the
algorithm point of view, between, on the one hand, a usual move
that results from a change in the current assignment and, on the
other hand, a change in the current set of constraints to consider.
The local search version of min-conflicts (Minton et al., 1992) is an
example of such a method.

. solution perturbation-based methods. Although their application

area is potentially large, solution perturbation methods have been
first developed in the particular context of user interface manage-
ment applications (Freeman-Benson et al., 1990). Their principle
is to synthesise offline a sequence of methods that can be then
straightforwardly applied online in case of any change that invali-
dates the previous solution, in order to transform it into a solution
of the new problem. They are basically limited to acyclic con-
straint networks that involve only functional one-way constraints,
also referred to as dataflow constraints: several input variables and
one output variable whose value is a function of the values of the
former. Several extensions have been however proposed to deal
with cyclic networks involving multi-way non functional constraints
(Sannella et al., 1993; Borning and Freeman-Benson, 1998; Trom-
bettoni, 1998).

. variable unassignment and reassignment-based methods like local

changes (Verfaillie and Schiex, 1994b). As do local search and
solution perturbation-based methods, these methods start from
the previous solution that they try to transform into a solution
of the new problem. They differ however in their way of doing that.
Their principle is to identify unsatisfied constraints, to unassign at
least one variable for each unsatisfied one, and then to reassign the
unassigned variables one after the other. A variable reassignment
is performed by choosing a value for it, by evaluating the resulting
unsatisfied constraints, by unassigning the same way at least one
variable for each unsatisfied constraint, and then to reassign the
unassigned variables one after the other, by avoiding unassigning
the variables that unassigned them (recursive process). In spite
of its local search flavour, this method, as min-conflicts (Minton
et al., 1992), terminates and is complete when embedded in a tree
search. Note the proximity between these methods and scheduling
methods that use an iterative repair approach to deal with changes
(Smith, 1995; Zweden et al., 1994; Chien et al., 2000; Kramer and
Smith, 2003), although the latter generally lay down completeness
for efficiency.
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Figure 3. Depth-first tree search.

5.3. AN EXAMPLE OF SOLUTION REUSE

We use the small instance in Figure 2 to illustrate these techniques.
This instance involves 4 variables x, ¥y, z, and t. The domains of z
and z are limited to a singleton: 1 for x and 2 for z. On the contrary,
the domains of y and t involve 3 values: 1, 2, and 3. Moreover, this
instance involves 3 constraints: < y, y # z, y = t. Figure 2 shows
the consistency graph of this instance, with edges representing allowed
pairs of values. Note that no constraints exist between x and z, x and
t, and z and t. All the pairs of values are thus allowed, but associated
edges are omitted.

We assume that the constraint x < y does not exist at time 1 and
that the solution {x = 1,y = 1,z = 2,t = 1} has been produced.
We assume that this constraint, which is not satisfied by the solution
produced at time 1, appears at time 2 (problem restriction).

Figure 3 shows the tree that is developed at time 2 by a depth-
first tree search using only backward-checking and the static orders
{z,y,z,t} on the variables and {1,2,3} on the values. Each failure
node is shown in black and the first leaf success node is shown in grey.
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Figure 4 shows the tree that is developed at the same time 2 by a
variable unassignment and reassignment-based method, like local
changes (Verfaillie and Schiex, 1994b), starting from the solution pro-
duced at time 1 and using backward-checking and the same variable
and value orderings. At the beginning of the search, only constraint
x < y is violated. Because = has only one possible value, it cannot be
unassigned and the only thing to do is to unassign y and to assign it
another value. This is what is tried at the first level of the tree search.
If we choose value 2 for y, constraint £ < y is no longer violated,
but constraints y # z and y = t are now violated. Because y can no
longer be unassigned in this branch (it has been already unassigned
and reassigned), z and ¢ must be unassigned, in order to assign them
another value. But, because z has only one possible value, it cannot
be unassigned and failure is unavoidable in this branch. A backtrack
occurs. If we choose now value 3 for y, constraint r < y is no longer
violated and only constraint y = ¢ is now violated. Because y can no
longer be unassigned in this branch, ¢t must be unassigned, in order
to assign it another value. This is what is tried at the second level
of the tree search. If we choose value 2 for ¢, constraint y = ¢ is
still violated. Because y and ¢ can no longer be unassigned in this
branch (they have been already unassigned and reassigned), failure is
unavoidable. Another backtrack occurs. But if we choose value 3 for ¢,
all the constraints are now satisfied. A solution has been found for the
new problem.

Note that similar differences between the trees developed by a usual
depth-first tree search and by a variable unassignment and reassignment-
based method would appear when using other variable and value or-
derings, as well as filtering methods such as forward-checking or arc
consistency enforcing.

5.4. REASONING REUSE TECHNIQUES

Reasoning reuse techniques deal with situations where (i) the previ-
ous problem P has been solved and proved to be either consistent
or inconsistent, (ii) this solving allowed a set I of implied constraints
(consequences of the constraints in P) to be produced and recorded, (iii)

article-verfaillie-jussien-2.tex; 12/02/2005; 18:29; p.14



15

a change occurred in the definition of P, resulting in a new problem
P’, but, (iv) due to some problem relaxation, the validity of I is no
longer guaranteed: for each constraint in I, we are not sure that it is
implied by the constraints in P’. Note that, if P’ is a restriction of P, I
is obviously valid in P and P’. The basic assumption of reasoning reuse
techniques is that, because P’ is close to P, most of the constraints in
I remain valid in P’. If this assumption is correct, keeping recorded the
ones that remain certainly valid and avoiding producing them again
favour search efficiency, i.e. the third of the above requirements (see
Section 3). It is however easy to build counterexamples where a small
change in the problem definition invalidates all the constraints in I.
Experiments confirm that such an approach allows computing to be
saved, especially when dealing with constrained problems for which
producing I is costly.

All these techniques involve two phases: a first one where the set I”
of the constraints in I that do not remain certainly valid is removed
and a second one where a new set I’ of implied constraints is produced
from the constraints in P" and I\ I” (the constraints in I that remain
certainly valid). Reasoning reuse techniques differ from each other only
in the information they use to determine whether an implied constraint
in I becomes questionable: constraint graph, constraint justification, or
constraint explanation. This results in three families of methods:

1. graph-based methods. See for example (Berlandier and Neveu, 1994;
Georget et al., 1999). They use only constraint graph information
to determine whether an implied constraint becomes questionable.
When an initial constraint c is removed or when an implied con-
straint ¢ is removed because its validity is no longer guaranteed,
all the implied constraints that may have been produced by using
¢ according to the constraint graph information become question-
able and may be removed too, with a possible propagation in the
constraint graph. For example, in the context of arc consistency,
when a value is reintroduced in the domain of a variable v, all the
value removals in the domains of the variables that are connected
to v become questionable.

2. justification-based methods. See for example (Prosser, 1989; Prosser
et al., 1992; Bessiere, 1991; Bessiere, 1992; Debruyne, 1996; Fages
et al., 1998). Based on a TMS-like (truth maintenance system)
approach (Doyle, 1979), they use the justification that has been
recorded with each implied constraint ¢ to determine whether ¢
becomes questionable. The justification of an implied constraint ¢’
is simply the constraint ¢ or the set C of constraints that directly
produced it. For example, in the context of arc consistency, the
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justification of the removal of a value val’ from the domain of a
variable v’ is the constraint ¢ that links v’ to another variable v,
such that no support has been found for val’ in the current domain
of v when enforcing arc consistency. As with graph-based methods,
when an initial constraint c is removed or when an implied con-
straint ¢ is removed because its validity is no longer guaranteed,
all the implied constraints whose justification is ¢ or includes ¢
become questionable and may be removed as well, with a possible
propagation in the constraint graph. For example, in the context
of arc consistency, when a value is reintroduced in the domain of
a variable v, any value removal in the domain of any variable v’
connected to v by a constraint ¢, whose justification is ¢, becomes
questionable.

3. explanation-based methods. See for example (Schiex and Verfaillie,
1993; Jussien et al., 2000; Jussien and Lhomme, 2002; Debruyne
et al., 2003). Also based on a TMS-like approach, they differ from
the previous justification-based methods only in the kind of in-
formation that is recorded with each implied constraint ¢’. The
recorded information is an explanation of ¢, i.e. a set C of initial
constraints that logically imply it. With this more complete infor-
mation, when an initial constraint c¢ is removed, all the implied
constraints whose justification includes ¢ are removed in one phase,
without propagation.

We can observe that justification and explanation-based methods
are more time and space consuming when producing implied constraints
and their justifications or explanations. However, they result in a more
precise information that allows fewer constraints in case of justifica-
tions, and even no constraints in case of explanations, to be checked
in order to maintain valid implied constraints in case of problem relax-
ation. We must also note that recorded justifications or explanations
strongly depend on the order in which variables and constraints are
handled by the implied constraint production algorithms.

A synthesis of some of these methods in the context of arc consis-
tency enforcing for dynamic CSP can be found in (Debruyne, 1996)
(short version) or in French in (Debruyne, 1995) (longer version).

5.5. AN EXAMPLE OF REASONING REUSE
We use the same small instance in Figure 2 to illustrate these tech-

niques. The only difference with Section 5.3 is that we invert instances
at time 1 and 2. We assume that constraint = < y exists at time 1, that
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arc consistency filtering has been performed and that this constraint
disappears at time 2 (problem relaxation).

Figure 5 (1) shows the result of arc consistency filtering at time
1. Removed values are shown in black. Figure 5 (2a) shows in grey
the value removals that become questionable during the first step of
arc consistency filtering at time 2, using a graph-based method like
AC|DC (Berlandier and Neveu, 1994). Because constraint x < y has
been removed, removals of values 1 and 2 from y’s domain become
questionable. Because value 1 had no support in z’s domain according
to the removed constraint, it must be restored. But, because value
2 had at least one support in z’s domain according to the removed
constraint, it can remain removed (it cannot have been removed be-
cause of constraint z < y). Then, because value 1 has been restored
in y’s domain, removals of values 1 and 2 from t’s domain become
questionable too. Because value 1 is supported by the restored value, it
must be restored. But, because value 2 is not supported by the restored
value, it can remain removed. Figure 5 (2b) shows in black the values
that remain removed at the end of this first step. It shows also the
result of the second step of arc consistency filtering at time 2, because
none of the restored values is removed again during the second step.
Note that generally this is not the case: values that are restored during
the first step may be removed during the second one. Note also that,
by using this graph-based method, all the values that are removed by
arc consistency filtering at time 1 become questionable during the first
step of arc consistency filtering at time 2. However, generally this is not
the case. Note finally that this method needs to determine whether a
questionable value is supported by another value, in order to determine
whether it must be restored. This may result in costly constraint checks.

Figure 6 (1) shows the result of arc consistency filtering at time
1, using a justification-based method like DnAC6 (Debruyne, 1996),
which associates with each removed value the constraint that justifies
this removal. For example, constraint < y is the justification of the
removal of value 1 from y’s domain. Figure 6 (2a) shows in grey the
value removals that become questionable during the first step of arc
consistency filtering at time 2. Because constraint x < y has been
removed and because this constraint is the justification of the removal
of value 1 from g’s domain, this removal becomes questionable and this
value must be restored. Note that, because the same constraint is not
the justification of the removal of value 2 from g’s domain, this removal
is not questionable. Then, because value 1 has been restored in y’s
domain and because constraint y = t is the justification of the removals
of value 1 and 2 from t’s domain, both removals become questionable.
Because value 1 is supported by the restored value, it must be restored.
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Figure 5. Graph-based method: (1) result of arc consistency filtering at time 1, (2a)
questionable values during the first step of arc consistency filtering at time 2, (2b)
result of the first and second steps of arc consistency filtering at time 2.

But, because value 2 is not supported by the restored value, it can
remain removed. As with the previous graph-based method, Figure 6
(2b) shows in black the values that remain removed at the end of this
first step and the result of the second step of arc consistency filtering
at time 2. Note that, by using this justification-based method, not
all the values that are removed by arc consistency filtering at time 1
become questionable during the first step of arc consistency filtering at
time 2 (for example, the removal of value 2 from y’s domain is never
questioned). Note also that this method needs to determine whether a
questionable value is supported by another value, in order to determine
whether it must be restored. This may result in costly constraint checks,
but in a lower number than with the previous graph-based method,
thanks to justifications.

Figure 7 (1) shows the result of arc consistency filtering at time
1, using an explanation-based method, like the one presented in (De-
bruyne et al., 2003), which associates with each removed value a set of
constraints that imply this removal. For example, {y = ¢,z < y} is an
explanation of the removal of value 1 from ¢’s domain. Figure 7 (2a)
shows in grey the value removals that become questionable during the

article-verfaillie-jussien-2.tex; 12/02/2005; 18:29; p.18



19

J[t.1]=(y=1)
J[t.2]=(y=t)

J[t,1]=(y=1)
J[t.2]=(y=1)

Figure 6. Justification-based method: (1) result of arc consistency filtering at time
1, (2a) questionable values during the first step of arc consistency filtering at time
2, (2b) result of the first and second steps of arc consistency filtering at time 2.

first step of arc consistency filtering at time 2. Because the removed
constraint x < y appears in the explanation of the removal of value 1
from y’s domain and t’s domain, both removals become questionable
and associated values must be restored. Note that, contrary to the
previous graph and justification-based methods, this method needs no
restoration propagation in the constraint graph and that all the values
that are associated with questionable removals must be restored. As
with the previous graph and justification-based methods, Figure 7 (2b)
shows in black the values that remain removed at the end of this first
step and the result of the second step of arc consistency filtering at
time 2. Note that, by using this explanation-based method, still fewer
values that are removed by arc consistency filtering at time 1 become
questionable during the first step of arc consistency filtering at time 2
(the removal of value 2 from y’s and t’s domains is never questioned).
Note also that this method needs no constraint checks to determine
whether a value must be restored!.

! Note that this is also the case with the justification-based method DnAC4
(Bessiére, 1991). Because it is based on the AC4 algorithm, all the constraint checks
are performed in a preprocessing step and their results recorded in sets of supported
values.
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Ely, 1]={x<y}
Ely,2]={y<>z}

E[t,1]={y=t,x<y}
E[t,2]={y=ty<>z}

Ely, 1]={x<y}

Ely,2]={y<>z} Ely,2]={y<>z}

E[t, 1]={y=t,x<y}

E[t,2]={y=t,y<>z} E[t,2]={y=t,y<>z}

Figure 7. Explanation-based method: (1) result of arc consistency filtering at time
1, (2a) questionable values during the first step of arc consistency filtering at time
2, (2b) result of the first and second steps of arc consistency filtering at time 2.

5.6. POSSIBLE COMBINATIONS

Because changes may combine problem restrictions and relaxations,
combining solution and reasoning reuse techniques is obviously desir-
able.

This is for example what is done in (Hentenryck and Provost, 1991).
In case of problem restriction, the previous solution is used as a heuris-
tics to guide the new search (solution reuse). Moreover, the fact that
no solution exists for the new problem before the previous solution, by
using the same variable and value orderings, is used to limit the new
search (reasoning reuse).

It can be also observed that search methods like dynamic backtrack-
ing (Ginsberg, 1993), and, more generally, local searches in the space of
partial locally consistent assignments, like decision repair (Jussien and
Lhomme, 2002), allow partial locally consistent assignments (potential
parts of solutions) as well as value removals (reasoning results) to be
reused in case of any change in the problem definition. See for example
(Verfaillie and Schiex, 1994a; Jussien et al., 2000).
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5.7. COMPLEXITY ISSUES

From the complexity point of view, it must be observed that methods
that reuse previous solutions and reasoning, on the one hand, and
methods that solve the new problem from scratch after any change,
on the other hand, both have the same worst-case time complezity: it
may be necessary to destroy the whole previous solution to build a
solution for the new problem and it is possible that all the previously
implied constraints be invalid in the new problem.

Concerning the worst-case space complexity of the justification and
explanation-based methods, it must be observed that the size of a
justification or explanation is limited by the number of constraints
and that only one justification or explanation is associated with every
implied constraint. In such conditions, if the number of possible im-
plied constraints is polynomial, the required space remains polynomial.
This is for example the case with arc consistency, because possible
implied constraints are only value removals, whose number is polyno-
mial. This is more generally the case with any limited form of local
consistency, such as (i, j)-consistency. Such a situation differs from the
one of ATMS systems (de Kleer, 1986) which aim at producing all the
possible implied constraints, along with all their possible explanations.

Experiments show that reusing previous solutions and reasoning is
generally profitable, even in case of large changes, apart from solving
hard instances at the frontier between consistency and inconsistency,
possibly because small changes may have in that case a strong impact
on the nature of the instance to solve. Such a situation suggests a
strategy which would consist in reusing first previous solutions and
reasoning for a short time, and restarting then from scratch in case of
failure of the first solving method.

A synthesis of some of these reactive methods for dynamic CSPs,
with experimental results, can be found in French in (Verfaillie and
Schiex, 1995).

5.8. SEARCH FOR A MINIMUM CHANGE

It has been observed that solution reuse techniques tend to favour
solution stability, i.e. the second of the above requirements (see Sec-
tion 3) (Verfaillie and Schiex, 1995; Elkyari et al., 2004). However, this
objective is not explicit and there is no guarantee about the result.
This is why some authors proposed methods whose objective is ex-
plicitly to minimise the distance between the previous solution and the
new one. See for example (Bellicha, 1993; Ran et al., 2002) for dynamic
CSP with a Hamming distance, and (Sakkout and Wallace, 2000) for
dynamic scheduling problems with a distance which is defined as the
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sum of the shifts in the temporal variables (start and end times of the
activities).

6. Proactive approaches

6.1. BASIC PRINCIPLES

Unlike reactive approaches which use no knowledge of the possible
changes, proactive approaches use all the knowledge they may have
about them in order to make decisions that will resist as much as
possible these possible changes. These approaches can be split into two
main families according to the nature of the solutions they produce,
either robust or flexible:

1. given a model of the possible changes (qualitative or quantitative,
probabilistic or not), a robust solution is a solution of the current
problem that has every chance to resist changes, i.e. to remain a
solution in spite of these changes;

2. a flexible solution is anything (partial solution, complete solution,
conditional solution, set of solutions, etc.) that, in case of change,
can be easily modified to produce a solution of the new problem.
Note the relationship between the production of flexible solutions
and the solution reuse techniques presented in Section 5.2. The
main difference is however that, with flexible solutions, flexibility
lies in the result, whereas, with solution reuse, flexibility lies in the
algorithms which are capable of producing a new solution from the
previous one.

6.2. PRODUCING ROBUST SOLUTIONS

The frameworks that have been proposed so far to define and to produce
robust solutions differ mainly in the model of uncertainty they use (see
Section 4).

In (Wallace and Freuder, 1998), a qualitative model of the possible
changes (temporary loss of values in the domains of the variables or of
combination of values in the constraints) is used to favour, via heuris-
tics, solutions that involve the most robust values or combinations of
values. As an example, let us consider the small instance in Figure 8,
slightly different from the one in Figure 2 (one more value in z’s domain)
and let us assume that changes may occur in z’s domain: any of the
two values may be lost, but the loss of value 1 is more likely than the
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Figure 8. A second small instance, used to illustrate (Wallace and Freuder, 1998),
(Fargier et al., 1996), and (Walsh, 2002).

one of value 2. In such conditions, value 2 is preferred and heuristics
move the search towards solution {z = 1,y = 3,z = 2,¢t = 3}, among
the three possible solutions.

In (Fargier et al., 1996), the model of the possible changes takes the
form of uncontrollable variables, besides usual controllable ones, which
may take any value in their domains. A usual objective is to produce a
solution that is valid whatever the values taken by the uncontrollable
variables. As an example, let us consider the same instance in Figure 8
and let us assume that variables z, y, and ¢ are controllable (we can
decide upon their value), but that variable z is uncontrollable (it may
take any value: 1 or 2). In such conditions, {z = 1,y = 3,t = 3} is a
solution because it is consistent with any value of z, but {z = 1,y =
2,t = 2} is not because it is not consistent with z = 2.

In (Walsh, 2002), a probability distribution is associated with the
domain of each uncontrollable variable. A usual objective is thus to
produce a solution whose probability of validity is maximum. As an
example, let us consider the same instance in Figure 8, but let us assume
now that variables x, z, and t are controllable, but that variable y is
uncontrollable. In such conditions, there is no solution that is valid
whatever the value taken by y. However, let us assume the following
probability distribution over y’s domain: P(y = 1) = 0.1, P(y = 2) =
0.7, P(y = 3) = 0.2. In these conditions, some solutions are certainly
not valid, such as {x = 1,z = 1,¢ = 1} (inconsistency whatever the
value taken by y). Other ones have a non null probability of validity
such as {x = 1,z = 2,¢t = 3} (consistency if y = 3; P = 0.2). But, the
one whose probability of validity is maximum is {z = 1,z = 1,¢t = 2}
(consistency if y = 2; P = 0.7).

In (Fargier and Lang, 1993), the model of the possible changes takes
the form of a probability of eristence associated with each constraint.
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Figure 9. A third small instance, used to illustrate (Fargier and Lang, 1993) and
(Fowler and Brown, 2000).

A usual objective is, as previously, to produce a solution whose prob-
ability of validity is maximum. As an example, let us consider the
small instance in Figure 9, slightly different from the one in Figure 8
(one less value in 2’s and #’s domains) and let us assume the following
independent probabilities of existence associated with each constraint:
P(x <y)=02,P(y # z) =1,P(y = t) = 0.6 (the constraint y # 2
is certain; the other ones are uncertain). In these conditions, some
solutions are certainly not valid, such as {z = 1,y = 2,2z = 2,¢t = 1}
(constraint y # z violated). Other ones have a non null probability of
validity such as {z = 1,y = 1,z = 2,t = 2} (constraints x < y and
y = t violated; P = (1 —0.2) - (1 — 0.6) = 0.32). But, the one whose
probability of validity is maximum is {z = 1,y = 1,z = 2,t = 1}
(constraint z < y violated; P =1 — 0.2 =0.8).

In (Fowler and Brown, 2000), the model of the possible changes takes
the form of a probability of addition to the current problem associated
with each possible additional variable. Moreover, each variable may be
assigned or not and a gain is associated with it assignment. The objec-
tive is to produce an assignment of the current variables that maximises
the expected value of its extension to the additional variables. As an
example, let us consider the same instance in Figure 9 and let us assume
that variables y and z are present in the current problem, but that
variables x and ¢ are not. They may be added, x with a probability
of 0.8 and ¢ with a probability of 0.6. Moreover, let us assume that
the gains associated with the assignment of variables x, y, z and ¢ are
respectively equal to 10, 20, 5, and 10. In such conditions, the expected
gain associated for example with the assignment {y = 1, z = 2} is equal
to 20454 0.6 - 10 = 31, because it will be possible to assign ¢, but not
possible to assign z. In fact, the optimal assignment is {y = 2} (z not
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Figure 10. A fourth small instance, used to illustrate (Lesaint, 1993), (Amilhastre
et al., 2002), and (Hebrard et al., 2004).

assigned) with an expected gain equal to 20 + 0.8 - 10 + 0.6 - 10 = 34,
because it will be possible to assign both = and ¢.

All these approaches tend to favour solution robustness, i.e. the first
of the above requirements (see Section 3). The reader may have a look
at the references for the specific solving methods that are proposed in
each of these uncertainty modelling frameworks.

Note the existence of specific approaches in related domains such as
scheduling to build robust solutions in spite of uncertainty about actual
activity durations. See for example (Davenport et al., 2001; Branke and
Mattfeld, 2002).

6.3. PRODUCING FLEXIBLE SOLUTIONS

The approaches that have been proposed so far to produce flexible
solutions are somewhat disparate.

First, the notion of value interchangeability, introduced in (Freuder,
1991), can be considered as a basis for the production of flexible solu-
tions.

In (Lesaint, 1993), a set of solutions, which takes the form of a
Cartesian product of variable sub-domains, is considered as a flexible so-
lution, because it will resist changes more likely than isolated solutions
will. As an example, let us consider the small instance in Figure 10,
slightly different from the one in Figure 2 (one more value in z’s and
z’s domains). This instance has five solutions. However, we can observe
that the set of solutions {z € {1,2},y = 3,z € {1,2},t = 3}, which
compactly represents four solutions, is more flexible than the isolated
solution {z = 1,y = 2,z = 1,t = 2}, because it will more likely resist
changes in z’s and z’s domains, although it will not resist changes in
y’s and t’s domains.
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Figure 11. Non deterministic automaton associated with the instance in Figure 10.

In (Jégou, 1994; Amilhastre et al., 2002), a conditional solution,
which takes the form of a binary decision diagram (BDD) (Bryant,
1986) or of an automaton (Vempaty, 1992), is used to compactly repre-
sent the set of the solutions of a dynamic CSP. As an example, let
us consider the same instance in Figure 10. The non deterministic
automaton showed in Figure 11 is a compact representation of the
set of solutions of this instance, built by using the variable order-
ing {z,y,z,t}: any solution can be obtained by following any path
P from the initial state I to the final state F' and by assigning at
each stage the variable associated with this stage with the value as-
sociated with the arc of P at this stage. For example, the solution
{z = 2,y = 3,z = 2,t = 3} is obtained by following systematically
the arcs that are the lowest in the figure. Once built offline, such a
structure can be used to react quickly online to any change in the do-
mains resulting either from value removals or addings, or from variable
assignments.

In (Ginsberg et al., 1998; Hebrard et al., 2004), a supermodel or
supersolution s has the property to remain a solution in case of any
loss of their value in s by a limited number a of variables if we accept
to change the value in s of these a variables and of a limited number b
of other variables. For example, an (1, 1)-supersolution is a solution s
such that, if we lose the value in s of only one variable, we can recover
a solution by changing this value and the value in s of only one other
variable. Let us consider the same instance in Figure 10. As previously
noted, it has five solutions. However, we can observe that the solution
{r =1,y =3,z = 1,t = 3} is a (1, 1)-supersolution (no change for
the other variables if the value 1 is lost in 2’s domain, one change if
the value 3 is lost in y’s domain, no change if the value 1 is lost in z’s
domain, and one change if the value 3 is lost in ¢’s domain), whereas
the other ones are (1,2) or (1, 3)-supersolutions. It will be consequently
preferred.
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Each one in its own way, all these methods tend to favour solution
robustness and stability, as well as search efficiency, i.e. the first three of
the above requirements (see Section 3). As with the methods presented
in the previous section, the reader may have a look at the references
for the specific solving methods that are proposed with each of these
flexibility frameworks.

Note also specific approaches in the scheduling domain such as (Drum-
mond et al., 1994), which presents the offline computing of a contin-
gent schedule that anticipates the most probable breaks resulting from
uncertainty about actual activity durations.

6.4. POSSIBLE COMBINATIONS

Both qualities are not incompatible and the production of solutions
that are at the same time robust and flexible, that have every chance
to resist changes and can be easily adapted when they did not resist,
is obviously a desirable objective.

A survey of the techniques that are used in the scheduling domain
to deal with uncertainty can be found in (Davenport and Beck, 2000).

6.5. COMPLEXITY ISSUES

Proactive methods have not been as systematically experimented as
reactive methods have been. Moreover, they are still very diverse in
terms of ambition, modelling features, and possible requests.

We can however say that adding to the problem definition informa-
tion to be taken into account about the possible changes obviously does
not decrease solving complexity. To be more precise, we can observe
that, as SAT is the standard of constraint decision problems in certain
environments and is NP-complete, QBF (Quantified Boolean Formu-
las), which is SAT with a free alternation of existential and universal
quantifiers and is Pspace-complete, can be viewed as the standard of
sequential constraint decision problems in uncertain environments. This
provides us with an upper-bound in terms of worst-case time complexity
for proactive methods. To go on with bad news, we must note that the
worst-case space complexity of a representation of the set of solutions
of a CSP as an automaton (see Section 6.3) is an exponential function
of the instance size.

article-verfaillie-jussien-2.tex; 12/02/2005; 18:29; p.27



28

7. Research directions

In this section we consider the research directions that are, in our
opinion, the most relevant if we want to deal more satisfactorily with
uncertainties and changes in constraint solving.

7.1. A GLOBAL REQUIREMENT-ORIENTED STUDY

First, we think that studies about uncertainties and changes in con-
straint solving generally focused on very specific aspects, such as an
efficient way of maintaining solutions or arc consistency results, or the
way of producing stable or robust solutions. Although all these studies
are useful, we think that a global study of what becomes constraint
solving in uncertain and dynamic contexts (main requirements, main
technical challenges, and most promising technical approaches) is still
missing now. Such a study might lead us to discover that the main
problems may not be where we thought they were and to reorient our
research accordingly.

7.2. INCREMENTAL AND DECREMENTAL CONSTRAINT PROPAGATION

It is however clear that, given that constraint propagation is the main
reasoning tool in constraint solving, efficient incremental and decre-
mental constraint propagation mechanisms are necessary if we want
to deal with dynamic environments. This has been done for many
years for the incremental side and remains to be done completely for
the decremental side, by incorporating justification and explanation
mechanisms as standards in constraint solving tools. See for example
(Jussien and Barichard, 2000).

7.3. HANDLING CONTROLLABLE AND UNCONTROLLABLE VARIABLES

For the moment, constraint solving tools handle only two types of
variables: those that represent possible decisions of an agent and those
that represent possible values of an optimisation criterion. They do not
handle correctly another type of variable: those that represent the pos-
sible decisions of the external world (state of the physical system and
environment, real effect of decisions, information or requests from users
and other entities, etc.), because these variables are uncontrollable: we
cannot decide about them; we only can consider their possible values.
Extending constraint solving mechanisms to handle uncontrollable as
well as controllable variables is certainly one of the most important
challenges of the next years and the key to deal correctly with uncer-
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tainty. See for example (Bordeaux and Montfroy, 2002) for an extension
of arc consistency to universally quantified variables.

7.4. TOWARDS PROACTIVE AND REACTIVE METHODS

Roughly speaking, reactive methods based on solution reuse tend to
favour search efficiency and solution stability, whereas reactive ones
based on reasoning reuse tend to favour only search efficiency. Proactive
methods based on the production of robust solutions obviously tend
to favour solution robustness, whereas proactive ones based on the
production of flexible solutions tend to favour solution robustness and
stability, as well as search efficiency. All of them try to maintain solution
consistency and optimality. If we want to satisfy as well as possible the
four requirements listed in Section 3, it might be interesting to con-
sider reactive-proactive methods that would anticipate possible future
changes as far as information is available and would adapt themselves
when changes occur (changes in the real world or in the information
about possible future changes).

8. Connections with related topics

In this section we consider other modelling and reasoning frameworks
that have something to do with the management of uncertainties and
changes in constraint solving and that could be used, either as a source
of inspiration for an extension of the CSP framework, or as a piece to
combine with the CSP framework.

8.1. STOCHASTIC SATISFIABILITY

The stochastic satisfiability problem (SSAT) (Littman et al., 2001) is
an extension of the satisfiability problem (SAT). Whereas SAT con-
siders only existential variables, SSAT allows any combination (any
sequence) of existential, universal, and random variables, with a prob-
ability associated with the value of each random variable and an inde-
pendence assumption between random variables and between random
and non random variables. Such combinations allow for example de-
cision problems under uncertainty, sequential or not, to be modelled.
The stochastic constraint satisfaction problem (SCSP) (Walsh, 2002)
does the same thing starting from the CSP framework. Although basic
frameworks have been defined and first algorithms have been proposed
(Manandhar et al., 2003), much work remains to be done, on the one
hand, to propose more efficient and scalable algorithms and, on the
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other hand, to relax the assumption of independence between variables
(see Section 8.2).

8.2. BAYESIAN NETWORKS

Bayesian networks (Pearl, 1988; Neapolitan, 1990) have in common
with constraint networks to consider finite domain variables and rela-
tions between variables. In constraint networks, these relations express
allowed and forbidden combinations of values. In valued constraint net-
works (VCSP) (Schiex et al., 1995), they express costs of combinations
of values. In Bayesian networks, they express conditional probabilities
between the value of a variable v and the values of its parent variables
(those that may have an influence on v). The combination of con-
straint and Bayesian networks (see for example (Dechter and Larkin,
2001; Pralet et al., 2004)) may be the key to relax the assumption
of independence between variables in the SSAT and SCSP frameworks
and to deal with decision problems under constraints and uncertainties.

8.3. MARKOV DECISION PROCESSES

Markov decision processes (MDP) (Puterman, 1994) are widely used
to model and solve sequential decision problems under uncertainty.
Although efficient algorithms, exact as well as approximate, have al-
ready been proposed to compute optimal policies, MDP suffer from an
extensive representation of states, actions, and transition probabilities.
Problems become quickly unmanageable as soon as we want to model
systems for which a significant number of variables is necessary to
represent possible states and actions. More compact representations
such as those that are used in constraint and Bayesian networks (see
Section 8.3) seem to be unavoidable. See for example (Boutilier et al.,
2000).

8.4. TEMPORAL REASONING WITH UNCERTAINTY

In the domain of planning, scheduling, and temporal reasoning, a usual
strategy to deal with uncertainty, referred to as least commitment strat-
egy, consists in deciding about some crucial choices (for example, the
activity selection and sequencing) and letting another process (for ex-
ample execution control) make the remaining decisions (for example
the exact starting time of the selected and sequenced activities) accord-
ing to information coming from actual execution. In such a situation,
the problem is to be sure that the remaining decisions will be able
to be made consistently. In the STPU framework (simple temporal
problem with uncertainty (Vidal and Fargier, 1999), an extension of
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the STP framework (simple temporal problem) (Dechter et al., 1991)
to deal with duration uncertainties, notions of controllability (Vidal
and Fargier, 1999; Morris et al., 2001) and dispatchability (Muscettola
et al., 1998a; Morris and Muscettola, 2000; Wallace and Freuder, 2005)
and associated algorithms have been defined to offer such a guarantee.
It would be interesting to extend such notions and algorithms to the
more general CSP framework, by connecting STPU and MCSP.
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