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ARTICLE INFO ABSTRACT

Editor: B.J. Blaauboer Human induced pluripotent stem cells (iPSC) have the potential to produce desired target cell types in vitro and
allow for the high-throughput screening of drugs/chemicals at population level thereby minimising the cost of
drug discovery and drug withdrawals after clinical trials. There is a substantial need for the characterisation of
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the iPSC derived models to better understand and utilise them for toxicological relevant applications. In our
study, iPSC (SBAD2 or SBAD3 lines obtained from StemBANCC project) were differentiated towards toxicolog-
ically relevant cell types: alveolar macrophages, brain capillary endothelial cells, brain cells, endothelial cells,
hepatocytes, lung airway epithelium, monocytes, podocytes and renal proximal tubular cells. A targeted tran-
scriptomic approach was employed to understand the effects of differentiation protocols on these cell types.

Pearson correlation and principal component analysis (PCA) separated most of the intended target cell types and
undifferentiated iPSC models as distinct groups with a high correlation among replicates from the same model.
Based on PCA, the intended target cell types could also be separated into the three germ layer groups (ectoderm,
endoderm and mesoderm). Differential expression analysis (DESeq2) presented the upregulated genes in each
intended target cell types that allowed the evaluation of the differentiation to certain degree and the selection of
key differentiation markers. In conclusion, these data confirm the versatile use of iPSC differentiated cell types as
standardizable and relevant model systems for in vitro toxicology.

1. Introduction

In 2006, induced pluripotent stem cells (iPSC) were first developed
by reprogramming mouse adult somatic cells with integrative retroviral
transduction of four key transcription factors named “Yamanaka fac-
tors” consisting of Oct3/4, Sox2, KIf4 and c-Myc (Takahashi and
Yamanaka, 2006). Over years, this technology was further improved by
other laboratories to reprogram human adult somatic cells, from sources
such as skin, hair follicles, peripheral blood mononuclear cells and urine
(Jiang et al., 2017; Re et al., 2018; Vlahos et al., 2019; Zhou et al., 2011)
to produce iPSC by genetic reprogramming using integrating viral vec-
tors such as retroviral or lentiviral vectors (Toivonen et al., 2013) and
non-integrated viral vectors such as Sendai virus, transfection with
episomal vectors, synthetic mRNA, miRNA, small molecules to obtain
transgene-free iPSC (Ban et al., 2011; Bang et al., 2018; Fusaki et al.,
2009; Rauch et al., 2018; Schlaeger et al., 2015; Subramanyam et al.,
2011; Warren et al., 2010; Yu et al., 2011). These iPSC have similar
molecular, morphological, and functional profile to embryonic stem
cells (ESC) and closely mimic them with their indefinite ability to self-
renew and differentiate into any desired cell type. Also, this technol-
ogy offers an easy accessibility to source material and a possibility to
obtain an endless supply of human tissues which will be especially
beneficial for obtaining inaccessible material such as brain tissues
without major ethical concerns. Thus, facilitating patient specific stem
cell therapies, regenerative medicines, drug discoveries and under-
standing disease models with the aid of recent advancements in CRISPR/
CAS9 gene editing technologies (Shi et al., 2017).

Models such as iPSC-derived skin keratinocytes and cardiomyocytes
have been well established and found to be beneficial in regenerative
medicine, disease modelling and chemical/drug screening (Ali et al.,
2020; Burridge et al., 2016; Itoh et al., 2013; Kim et al., 2018; Sharma
et al., 2018). However, majority of the existing iPSC-derived models are
in the early stages of development and often have immature or fetal-like
characteristics which might limit their use (Luo et al., 2016). Some
models, although not fully established to replace existing animal or in
vitro models, are found to be useful in investigating and understanding
disease states. For example, iPSC-derived neuronal models have been
used for the study of neurodegenerative diseases using patient-derived
stem cells, and also to investigate developmental neurotoxicity (Bal-
Price et al., 2018; Kamata et al., 2020; Penney et al., 2020; Pistollato
et al., 2020). In order to explore the potential of these models for toxi-
cological testing and risk assessment, it is imperative to perform in-
depth characterisation, to understand cellular differentiation status,
and how well the model represents its in vivo counterpart.

With the steady development of next generation sequencing
methods, transcriptomics techniques have become more cost effective.
As such, they have become a more readily available high throughput and
data rich method to interrogate complex systems and gene expression
patterns (Cahan et al., 2014; Yu et al., 2015). Their application in dis-
secting the transcriptional networks of iPSC-derived cell types repre-
sents an important opportunity to provide an in-depth assessment of
cellular differentiation status at a scale not previously attempted.

Additional outputs from these data can also aid in identifying tran-
scription factors, and in further understanding genetic regulation. This
would help in improving the differentiation efficiency and it could
identify uniquely expressed genes in each model which could be used as
markers to track the differentiation stages. This approach will also aid in
understanding disease state models (Brennand et al., 2011; Burke et al.,
2020; Griesi-Oliveira et al., 2021; Wellens et al., 2021; Yeo and Ng,
2011).

With the collective resources and knowledge obtained from previous
projects, mainly StemBANCC (Morrison et al., 2015) (Innovative Med-
icines Initiative (IMI) funded) that primarily focussed on producing a
well-characterised, standardised iPSC repository and in developing iPSC
derived models, in3 (Integrated in vitro and in silico tools), a European
Union funded project, focussed on utilising iPSC derived target tissues of
toxicological relevance such as brain, cells of the immune system, lung,
liver, kidney and vasculature. The study presented here, is part of this
project, and was conducted to investigate and compare the tran-
scriptomic changes across different target cell types resulting from a
range of cell specific iPSC differentiation protocols. The cell types
evaluated in this study were alveolar macrophages (immune system),
brain capillary endothelial cells (brain/vasculature), BrainSpheres
(brain), endothelial cells (vasculature), hepatocytes (liver), lung airway
epithelium (lung), monocytes (immune system), neuronal cells (brain),
podocytes and proximal tubular cells (kidney). Further, the possibilities
of utilising the transcriptomic signatures of the cells resulting from each
differentiation protocol to examine the success of the differentiation was
explored.

2. Materials and methods
2.1. iPSC culture

Within the framework of the in3 project, two iPSC lines: SBAD2,
SBAD3 provided by the StemBANCC project (http://stembancc.org)
were used. These iPSC lines were generated by Lyle Armstrong Labo-
ratory, Newcastle University, by reprogramming human dermal fibro-
blasts into iPSC (SBAD2 and SBAD3) using non-integrated Sendai viral
transfection with Cytotune 2.0 (Thermofisher). The SBAD2 line was
further genetically modified by adding green fluorescent protein (GFP)
downstream of HMOX1 gene by Andras Dinnyés laboratory, Bio-
talentum. The SBAD2-HMOX1-GFP cell line was used for the two kidney
models and this fluorescent property was not exploited in this particular
study. For hepatocytes differentiation, genetically modified SBAD2-3x
line as described in Boon et al. was used (Boon et al., 2020; Morrison
et al., 2015; Snijders et al., 2021)and transgenesis was performed in
these lines using recombinase-mediated cassette exchange (Ordovas
et al., 2015).

All four cell lines were cultured on either lactose dehydrogenase
elevating virus (LDEV) - free reduced growth factor basement membrane
(Geltrex) or Matrigel (both extracted from murine Engelbreth-Holm-
Swarm (EHS) tumours) coated plates using mTeSR1 medium (cat no:
85850, StemCell technologies) and were routinely passaged every three
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to four days using 0.02% EDTA as described previously in (Rauch et al.,
2018) and detailed in the EURL ECVAM DB-ALM Protocol n°215.

2.2. Differentiation of iPSC to intended targets/ Differentiation protocols

As most of these iPSC differentiation protocols are under develop-
ment and in vitro cells only represent models of the in vivo situation, it is
important to note that the iPSC derived target cell types are considered
and indicated as ‘intended target cell types’ in this study.

iPSC lines (SBAD2, SBAD3 or SBAD2-HMOX1-GFP) were subjected
to directed differentiation to produce 10 intended target cell types
consisting of Alveolar macrophages (MAC), Brain capillary endothelial
cells (BBB), BrainSpheres (BS), Endothelial cells (EC), Hepatocytes (HC),
Lung airway epithelium (AE), Monocytes (MON), Neuronal cells (NC),
Podocytes (PODO) and Proximal tubular cells (PT) corresponding to 6
different organ systems (Brain, Inmune system, Kidney, Liver, Lung and
Vasculature). Schematic representation of all 10 detailed differentiation
protocols, culture conditions and the references to the protocols are
presented in Fig. 1.

Monocytes were produced, as previously described in (Wilgenburg
et al., 2013), using BMP4, SCF, VEGF in mTeSR in ultra-low attachment
(ULA) plates for 4 days followed by culture in X-VIVO base medium with
M-CSF and IL3. Cells were harvested using a 40 pm cell strainer from day
21. For alveolar macrophages (MAC), the harvested monocytes were
cultured for an additional 7 days using RPMI medium containing
myeloid differentiation factors IL6 and M-CSF. TGFp and GM-CSF were
also included to improve differentiation towards an alveolar or airway
macrophage phenotype (Yu et al., 2017).

Brain capillary endothelial cells were obtained by slightly
adjusting the Qian protocol (Qian et al., 2017) to the SBAD3 cell line as
previously reported in Wellens et al. (Wellens et al., 2021). Directed
differentiation of iPSC into BBB was executed by forming mesoderm-
derived endothelial progenitors through CHIR99021 (CHIR) and sub-
sequently differentiated using small molecules and growth factors like
bFGF, retinoic acid (RA) and B27 in human endothelial serum free
medium.

BrainSpheres and Neuronal cells were obtained by first producing
neuronal progenitor cells. For the BS, containing neurons, astrocytes and
oligodendrocytes, Gibco PSC Neural Induction kit (Gibco, A1647801)
was used for the differentiation of iPSC to neuronal progenitor cells as
described by the manufacturer. The neuronal progenitor cells were
expanded and used between passage 10 and 15 for the differentiation to
3D BrainSpheres. The differentiation, for 43 days, was performed as
previously described (Pamies et al., 2017) with the cells under constant
gyratory shaking (86 rpm) in differentiation medium (Neurobasal®
Electro Medium (Gibco) supplemented with 5% B-27® Electrophysi-
ology (Gibco), 1% glutamax (Gibco), 0.02 pg/ml human recombinant
GDNF (Gemini), 0.02 pg/ml human recombinant BDNF (Gemini)). For
the neuronal cells, progenitor cells were created through SMAD inhibi-
tion with SB4315412, LDN1913189, bFGF and additional medium
supplements as described in (Ochalek et al., 2017). At day 10 of dif-
ferentiation, neural rosettes were manually selected and expanded to
neuronal progenitor cells (NPCs) on poly-L-ornithine/laminin coated-
plates in neural maintenance medium, containing epidermal growth
factor (EGF) and bFGF. To further generate human neurons, NPCs were
plated on poly-L- ornithine/laminin coated-plates in neural mainte-
nance medium containing 0.2 mM ascorbic acid (without EGF and
bFGF).

Endothelial cells were differentiated from iPSC as described in
Gholami et al., 2021 (Gholami et al., 2021). In brief, iPSC were trypsi-
nised and transferred to ultra-low attachment plates in mTeSR medium
(Gholami et al., 2021). iPSC cell aggregates, with a diameter of 200 pM,
were differentiated to endothelial cells by using small molecules
CHIR00921, purmorphamine, BMP4, SB431542 and VEGFA in RMPI
medium with B27 Plus. After 4 days in RPMI medium, the medium was
changed to Endothelial Cell Growth Medium-2 (EGM-2, Lonza) with
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additional VEGF-A. At day 11 of differentiation, the cells were sorted by
flow cytometry for vascular endothelial growth factor receptor 2
(VEGFR2) and seeded on collagen I coated plates in EGM-2.

For hepatocytes, a recombinant cell line was produced as described
in (Boon et al., 2020) using zinc finger mediated integration of recom-
binase cassette by nucleofection. This recombinant cell line was further
utilized to differentiate into hepatocytes as described in Boon et al.,
2020 and (Ordovas et al., 2016). Cells with 70-80% confluence state
were differentiated using several differentiation factors Wnt3a, activin
A, BMP4, aFGF, HGF, doxycycline etc., at different intervals in liver
differentiation medium (LDM) or amino acids and glycine supplemented
LDM. In the beginning 0.6% DMSO was used until day 12 and it was
changed to 2% DMSO on day 12. From day 14 onwards, cells were
maintained without additional factors in LDMAAGly medium until day
40.

Lung airway epithelium was produced by first differentiating iPSC
into a mixed population of lung progenitors during a 14 day period using
a published protocol by (Konishi et al., 2016). The mixed progenitors
were trypsinised and plated on NIH/3 T3 cells in the presence of ROCKi
in BEGM media which allows expansion of basal like cells. After 3 pas-
sages, the cells were plated on thincert inserts and an air liquid interface
was induced to promote respiratory epithelium differentiation during 4
weeks in pneumacult medium supplemented with heparin and HCS
(Djidrovski et al., 2021).

Podocytes were produced as described previously (Murphy et al.,
2019; Rauch et al., 2018). iPSC, after reaching about 70% confluency,
were detached using accutase and replated onto the Costar 24 well plate
format in podocyte culture medium (PCM) supplemented with retinoic
acid (RA), activin A, BMP7 along with 1.25% FBS until day 10. By day
10, cells had stopped proliferating and podocytes were maintained in
PCM medium with 1.25% FBS and utilized without any differentiation
factor.

Proximal tubular cells were obtained by differentiating iPSC using
the protocol described in (Chandrasekaran et al., 2021). To summarize,
iPSC, grown to about 70-80% confluence, were detached using accutase
and replated on to Matrigel coated plates with the small molecules
CHIR992021 and TTNPB to induce intermediate mesoderm. Renal
lineage was produced by day 6 with addition of FGF9 along with growth
factors supplementation, such as EGF and hydrocortisone. After day 6,
FGF9 was removed, and cells were maintained in the growth factor
supplementation until day 14 to form proximal tubule like cells.

2.3. Sample preparation

All of the 10 above mentioned intended target cell types were grown
on culture formats as mentioned in Fig. 1 and incubated for 24 h in
medium containing 0.1% DMSO. The addition of 0.1% DMSO in the
medium enable the same samples to be used to study the effects of 24 h
treatments with compounds dissolved in 0.1% DMSO on target specific
cell models reported in other publications from the in3 project. After 24
h, supernatants were removed, and the cells were lysed with the
required amount of lysis buffer (to obtain minimum of 0.25 million
cells/mL). The lysates were frozen at —80 °C until shipment. In this
study, the targeted transcriptomes of the 10 different intended target
cell types and undifferentiated SBAD 3 iPSC were compared using three
biological replicates of each cell type lysed after 24 h of incubation in
medium containing 0.1% DMSO. The day of differentiation/day of lysis
mentioned in the article represents the total number of days after which
the intended target cell type was achieved following differentiation with
the additional 24 h exposure period.

All the samples were then sent to BioClavis technologies, Glasgow,
UK to perform TempO-Seq targeted transcriptome assay and processed
simultaneously, as a single batch TempO-Seq targeted transcriptome
assay analysis was performed using the EU-ToxRisk v2.1 panel con-
taining 3565 probes (representing 3257 genes) as mentioned in
(Limonciel et al., 2018). Standard quality control tests were performed
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Fig. 1. Overview of the 10 differentiation protocols with their intended target cell type used for the generation of samples for the targeted transcriptomic sequencing

(TempO-Seq).

Information on the iPSC line used for differentiation, differentiation protocol, the cell culture material used at the end of the differentiation, surface coating, antibiotics (P/S =
penicillin/streptomycin), serum concentration (FBS = Fetal Bovine Serum), days of differentiation at which the cells were lysed and protocol reference are provided. The
differentiation protocol in itself contains information on the time of differentiation, medium with differentiation factors, culture plate format with surface coating and protocol
specific comments. All cell types were grown as adherent cultures unless specifically indicated by the sphere figures (ULA). Table and timeline figures were made using Microsoft
PowerPoint and culture material figures using Servier Medical Art licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.

List of abbreviations in Fig. 1: aFGF - acidic Fibroblast Growth Factor; BDNF - Brain Derived Neurotrophic Factor; BEGM- Bronchial Epithelial Cell Growth Medium;
bFGF - basic Fibroblast Growth Factor; BMP4 - Bone Morphogenetic Protein 4; BMP7 - Bone Morphogenetic Protein 7; CHIR - CHIR99021; DMSO - Dimethyl
Sulfoxide; EGF - Epidermal Growth Factor; EGM-2 - Endothelial cell Growth Medium-2; FCS/FBS - Fetal Calf Serum; FGF9 - Fibroblast Growth Factor 9; GDNF - Glial-
Derived Neurotrophic Factor; HCS - Hydrocortisone; hESFM - human Endothelial Serum Free Medium; HGF - Hepatocyte Growth Factor; IL3 - Interleukin 3; IL6 -
Interleukin 6; ITS - Insulin Transferrin Selenium; LDMAA - Liver Differentiation Medium + Amino acids; LDMAAGly - LDMAA + Glycine; M-CSF - Macrophage-
Colony Stimulating Factor; N/A — Not applicable; NEAA - Non-Essential Amino Acid; P - Passage; P/S - Penicillin-Streptomycin; RA - Retinoic Acid; ROCKi -
ROCK pathway inhibitor Y-27632; RPMI - Roswell Park Memorial Institute medium; SCF - Stem Cell Factor; TGFp - Transforming Growth Factor Beta; TTNPB - 4-[(E)-
2-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid; ULA - Ultra-Low Adherence Plate; VEGF - Vascular Endothelial Growth Factor
165; VEGF-A - Vascular Endothelial Growth Factor 165; Wnt3a - Wingless-Type MMTV Integration Site Family, Member 3 A; X-VIVO - X-VIVO 15 medium.
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by BioClavis on read counts for all the samples. Generated FASTQ files
were aligned using Bowtie aligner to generate read counts per gene for
each sample (Li and Durbin, 2009).

2.4. Data management and harmonization

A central data management system was adopted using Edelweiss-
Data™ management system (SaferWorldbyDesign2020) to store and
access the data. This provides options to interoperate the data across
different labs using the Python and R based workflows which were
hosted on the Jupyter notebooks (https://jupyter.org). The raw data file
containing the read count information for each sample with unique
samplelD obtained from BioClavis were hosted on the EdelweissData™
management system. This was complemented with a corresponding
metadata file containing all the necessary information on cell lines,
intended target cell types, organs, plate format, dimension of cells,
number of replicates, and day of differentiation during lysis etc. An
automatic sample selection and filtering was done with the help of in-
formation available in the metadate file using the python workflow. This
allowed the selection of iPSC derived control samples for the 10 different
intended target cell types along with an iPSC line (SBAD3) as a reference
for this study. In total, 33 samples representing three biological repli-
cates for each of the 11 cell types (10 intended target cell types +1
undifferentiated iPSC line)were selected and used for further analysis.

2.5. Normalization and differential expression analysis

Raw read count distribution box plots were used to look at the dis-
tribution of the raw read counts and find outliers within the replicate
samples from same group. The low read count probes with values less
than the median value (median value: 12) of all probes across all sam-
ples were removed. After applying this median cut-off, 3066 probes
were selected out of 3565 probes for further analysis. Normalization was
performed for the selected list using DESeq2 analysis using the median
ratio method as described previously (Love et al., 2014; Singh et al.,
2021).

Further differential expression analysis was performed to find out the
top 10 differentially expressed genes with significant p-adjusted value
(p.adj) <0.05 in each of the 11 cell types (10 intended target cell types
+1 undifferentiated iPSC line). As control group, an averaged cell model
was created by combining the samples of all other cell models except the
one under investigation, i.e., the target cell type of interest is taken as the
test group (n = 3) and compared to the control group consisting of the
mean of all other cell types (n = 30).

A principal component analysis (PCA) of all probes of the triplicates
of the 10 intended target cell types and undifferentiated iPSC using raw
read counts transformed using the regularized log function (r-log) of
DESeq2 was performed and a similarity matrix was calculated using
Pearson correlation coefficients between the normalised expression data
of samples and clustering was done using the average Euclidean distance
method. This was generated using the Morpheus online tool provided by
the Broad institute (https://software.broadinstitute.org/morpheus/).

Finally, a visualization of the the read counts for the top 500 genes
across all samples was performed to see the variance between them
(Supplementary fig. 1).

3. Results
3.1. Differentiation to intended cell types and correlation

Human iPSCs were differentiated into multiple cell types as shown in
Fig. 1. The differentiation protocols for each of these intended target cell
types are displayed together with the source iPSC cell line, details on the
culturing conditions, days of differentiation. Data obtained from
TempO-Seq assay showed variations in total raw read counts distribu-
tion across different intended target cell types and, in some cases, within
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the triplicates of the same intended target cell type as shown in Sup-
plementary Fig. 1. However, DESeq2 normalised read counts displayed
high similarity between triplicates of the same sample as well as good
separation between different intended target cell types, in both Pearson
similarity correlation analysis (Fig. 2A) and in PCA (Fig. 2B), indicating
the performance of DESeq2 on eliminating the sample variances. For
example, monocytes which showed some variations between the tripli-
cates in the read count distribution (as shown in Supplementary Fig. 1)
displayed high Pearson correlation score (0.98) with the DESeq2 nor-
malised read counts.

Correlation between the different intended target cell types and iPSC
differed between the models, with the highest mean Pearson correlation
(0.66) for the BBB triplicates and lowest (0.09) for the HC triplicates.
The HC and EC triplicates also clearly cluster separately from the other
intended target cell types in the Euclidean clustering (Fig. 2A) as well as
in the PCA plot (Fig. 2B). Some of the intended target cell type groups
displayed a higher similarity with each other, like neuronal cell and
BrainSpheres; monocytes and alveolar macrophages; podocytes, prox-
imal tubular cells and brain capillary endothelial cells, which was re-
flected in the PCA by clustering in close proximity of each other and by a
higher Pearson correlation score. In addition, a general distinction ac-
cording to the germ layers of these intended cell types could be made
with ectodermal (BS and NC), mesodermal (MAC, MON, EC, BBB, PODO
and PT) and endodermal (AE and HC) cell targets as distinct clusters
based on the first principal component (PC1).

3.2. Top 10 differentially expressed genes

Differential expression analysis (DESeq2) was used to identify the
differentially expressed probes for each intended target cell type
compared to the average of all the other target cell types. For each
intended target cell type, the DESeq2 normalised read counts of the top
ten differentially expressed probes with p-adjusted value of <0.05 were
plotted, in order of decreasing fold change, in a heatmap and accom-
panying table (Fig. 3).

The individual normalised read counts of the top two probes of each
intended target cell type, were presented on the right side of the table,
displaying the read count variability within triplicates. For example, the
top 9 upregulated genes for the induced pluripotent stem cells are,
ESRG, POUSF1, LEFTY2, TERT, LCK, SLC18A2, LEFTY1, FOXD3 and
NPTX2. As multiple probes were used for sequencing of the embryonic
stem cell related (ESRG) gene, this gene appeared twice in the list
(ESRG_81319 and ESRG_81320). Full name of the top upregulated genes
is mentioned in the Fig. 3 and the complete list is provided in the sup-
plementary information 2. This was also the case for keratin 4
(KRT4_3695 and KRT4_19414) which were identified as the top two
differentially expressed probes of the lung airway epithelium, followed
by Cystatin A (CSTA_25241). The top two differentially expressed genes
identified for the different models were (normalised read count +
standard deviation): iPSC- ESRG (235 + 165) and POU5SF1 (3059 +
776); MAC- IGSF6 (36 + 2) and CCL24 (37 + 36); BBB- HAPLN1 (632 +
119) and CGA (218 + 186); BS- NEFL (16,991 + 450) and NCAN (607
+ 103); EC- GIMAP1-GIMAP5 (3143 + 249) and CALM3 (20,782 +
2512); HC- TTR (50,625 + 7087) and AFP (232,802 + 34,235); AE-
KRT4_3695 (16,655 + 2952), KRT4.19414 (2630 + 550) and CSTA
(4331 + 765); MON- P2RY13 (45 + 18) and FMO1 (307 + 46); NC-
MAPT (1114 + 12) and MT3 (55 + 10); PODO- ACTA1 (305 + 44) and
HAPLN1 (1018 =+ 23); PT- EMX2 (164 + 22) and HOXAS (120 + 40).
Most of these upregulated genes are almost uniquely expressed in the
intended target cell type as it is the case for the top 10 upregulated
probes of iPSC, endothelial cells, hepatocytes, lung airway epithelium
and monocytes. Other genes were commonly expressed in different cell
types such as NPTX2 (iPSC and NC) and HAPLN1 (BBB and PODO). Of
the top 20 differentially expressed probes for the immune models MON
and MAC, seven probes, AQP1, CD14, IGSF6, FLT1, MYL4, OLR1 and
CCDC80, were shared between the two, a result of the partially common
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Fig. 2. Sample quality control and correlation.

50

A) Pearson correlation heatmap with Euclidean average clustering (created using the Morpheus online tool provided by the Broad institute (https://software.broadinstitute.
org/morpheus/) for normalised read counts of triplicates of all the intended target cell types and iPSC. B) Principal Component Analysis (PCA) of all probes of the tripli-
cates of the 10 intended target cell types and undifferentiated iPSC. Germ layers separation of the intended target cell types are indicated on the graph with dotted lines. PCA plot

was created in R.
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Fig. 3. Top 10 significantly upregulated genes across all intended target cell types.

The normalised read counts of top 10 differentially expressed probes per intended target cell type are shown in the heatmap. Heatmap was generated using Microsoft Excel 365
with conditional formatting applied to each row using 2-color system. (Red (high expression); white (low expression)). Read count values used in the heatmap are displayed in
table together with standard deviation (SD). Information on probe, gene description and ENSEMBL ID are displayed on the left side. On the right side, the individual replicate
normalised read counts of the top two differentially expressed probes per intended target cell type are plotted. Scatterplots were created in Prism (v 9.0.2).

differentiation protocol (data not shown). An overlap in the differen-
tially expressed probes was also present for the neuronal models, BS and
NC, with NEFL, MAPT and SLC1A2 as common upregulated probes.
Most of the other probes were also expressed in both models, even
though not belonging to the top 10 upregulated probes. Some exceptions
were also observed: GAGE2A, S100B and GAGE1 were only expressed in
the BrainSpheres while MT3 was only expressed in the neuronal cells.

4. Discussion

In this study, we evaluated differences in transcriptomic signatures
of 10 different intended target cell types derived from human iPSC.

Correlation and variability between the different target cell types was
assessed using Pearson correlation and PCA. Cell types like brain
capillary endothelial cells and proximal tubular cells shared epithelial/
endothelial characteristics, like transporters, and thus clustered closely;
neuronal cells and BrainSpheres as expected clustered together, since
they present a very similar composition of brain parenchymal cell types
(neurons and astrocytes in both models, and oligodendrocytes only in
BS). Moreover, PCA also showed separation of cell types based on germ
layer origin. We further identified the top ten differentially expressed
genes for each model in comparison with the average expression in all
other models combined, allowing the investigation of genes that were
distinctly expressed in one model.
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The undifferentiated iPSC displayed, as expected, an enrichment of
stemness factors like POUSF1, ESRG, LEFTY2, TERT, LCK, LEFTY1 and
FOXD3 (Kim et al., 2014; Lowry et al., 2008; Palma et al., 2013; Taka-
hashi et al., 2007; Zhu et al., 2014). However, two genes enriched in the
iPSC, SLC18A2 and NPTX2 are associated with neuronal tissue sug-
gesting that the iPSCs are more prone to differentiate towards neuronal
cells. SLC18A2, also known as Vesicular Monoamine Transporter 2
(VMAT2), is involved in monoamine transport, for example, in dopa-
minergic neurons (Playne et al., 2018). Neuronal Pentraxin 2 (NPTX2 or
NARP), is thought to be involved in axon guidance (Pelkey et al., 2015)
and was also enriched in the neuronal cell model but it was not
expressed in BrainSpheres.

In macrophages, IGSF6, a member of the immunoglobulin super-
family, was presented as top differentially expressed probe while it was
also highly expressed in monocytes. This type I membrane protein was
found to be specifically expressed in hematopoietic tissue, more
particular in myeloid and immature dendritic cells (Bates et al., 2000),
and is consistent with the myeloid differentiation trajectory of the MON
and MAC iPSC protocols. The hematopoietic specificity of this gene was
also reflected in the lack of expression in the other models. Chemokine
genes CCL22 and CCL24 (eotaxin-2) were specifically upregulated in
MAG, again consistent with in vivo and primary macrophage cell specific
expression (Fransen and Leonard, 2021; Van den Bossche et al., 2016;
Xuan et al., 2015). CCL22 acts as chemoattractant for monocytes, den-
dritic cells, T cells and natural Killer cells (Ushio et al., 2018), while
CCL24 attracts mainly eosinophils and other CCR3 expressing cells (Dai
et al., 2016). A number of prototypical markers of macrophages were
not present within the TempO-Seq panel, including MRC1 and ITGAX.
Increased expression of these markers was however observed by RT-PCR
compared to undifferentiated iPSC (data not shown), supporting the
success of the MAC differentiation protocol.

The differentially expressed gene with the highest fold change
identified for the BBB model was hyaluronan and proteoglycan link
protein 1 (HAPLN1), a linking protein detected in part of the brain
extracellular matrix together with hyaluronic acid, lecticans and
tenascins (Wong et al., 2013; Zimmermann and Dours-Zimmermann,
2008). This probe was also found to be differentially expressed in the
podocytes. The gene with the second highest fold change for the BBB
was CGA, encoding for the alpha subunit of the complex glycoprotein
hormones (human chorionic gonadotropin, luteinizing hormone,
follicle-stimulating hormone and thyroid-stimulating hormone) and was
also found to be expressed in the EC model. There are currently no
studies about the possible expression of CGA in the BBB. ABCG2 (also
known as BCRP), known to be enriched in the human blood brain bar-
rier, is an important efflux transporter that limits the accumulation of
variety of drugs in the brain (Suhy et al., 2017; Warren et al., 2009). It
was found in the top 10 differentially expressed probes in BBB.

The two brain models, BrainSpheres (3D cell cultures) and neuronal
cells (2D cell cultures) showed as expected much greater similarities
with each other than with any of the other models, even though the
differentiation protocols differ. NEFL, SLC1A2, MAP2 and NCAM1 were
identified as top expressed genes in human neurons, while NCAN,
S100B, SLC1A2, MAP2, MT3 and NCAM1 were (also) identified in the
astrocytes and S100B, SLC1A2 and NCAM1 were found to be expressed
in oligodendrocytes (McKenzie et al., 2018). The S100B gene, known to
be expressed in astrocytes and oligodendrocytes (McKenzie et al., 2018;
Michetti et al., 2019), was only expressed in the BS, reflecting the dif-
ference with the NC model. The GAGE family members GAGE2A and
GAGE1 were also uniquely expressed in the BS. An increased expression
of the GAGE family members was reported in paediatric and high-grade
brain tumours although GAGE2A and GAGE1l were not specifically
investigated (Gjerstorff and Ditzel, 2008; Jacobs et al., 2008; Scarcella
et al., 1999). The metallothionein 3 (MT3) gene was only expressed in
the NC model while this gene is found to be expressed in both neurons
and astrocytes (Vasdk and Meloni, 2017; Yamada et al., 1996). This
difference could possibly be attributed the different differentiation
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protocols and cell sources which were used (i.e SBAD2 for NC and
SBAD3 for BS).

Three of the top ten differentially expressed probes identified in the
endothelial cells belong to the GIMAP family, GTPase of the immunity
associated protein family (Kriicken et al., 2004). This family of genes
was found to be expressed mainly in spleen and lymph nodes but as well
in other organs like heart, muscle, digestive tract and placenta. As this
family has only recently been identified, not much is known on their
expression in endothelial cells, especially not for the highest differen-
tially expressed GIMAP-1-GIMAP-5 transcriptional readthrough. The
second most differentially expressed gene identified for the EC model is
CALM3. This protein is a moderator of calcium signalling, serving as a
transductor or sensor of Ca®" signals (Alaimo and Villarroel, 2018;
Toutenhoofd et al., 1998). Calmodulin is widely expressed throughout
tissues and no study, to our knowledge, addresses the specific expression
of CALM3 in endothelium. Von Willebrand factor (vWF), a multimeric
glycoprotein produced by endothelial cells was also displayed in the top
10 differentially expressed probes of EC.

Hepatocytes exhibited most of their typical markers in the top 10
upregulated probes. The most highly expressed gene in hepatocytes was
TTR (Transthyretin). It is a secretory protein mainly produced by he-
patocytes in liver and is responsible for the transport of thyroxine and
retinol. Existing iPSC-derived hepatocyte models are known to have
similar expression of TTR as primary hepatocytes and are being utilized
in studying TTR related amyloidosis (Niemietz et al., 2018). The second
most expressed gene was AFP, alpha-fetal protein. Although the secre-
tory level of AFP is known to decrease significantly after development,
gene expression level remains significantly high in the hepatocytes. But
this could also represent marker for retrograde differentiation (Kuhl-
mann and Peschke, 2006). Other genes in the top 10 list in hepatocytes
are SERPINA1, a protease inhibitor belonging to serpin superfamily;
serum amyloid A2 (SAA2) and apolipoprotein A1 (APOA1) which be-
longs to the family of apolipoproteins; glycoproteins such as transferrin
(TF) and fibrinogen gamma chain (FGG) and albumin (ALB), a gold
standard liver marker which is exclusively produced in liver. These
genes are known to be enriched in human liver (Andrews et al., 2021).
This distinct and high expression of various liver specific genes in
comparison to other models cluster the hepatocytes separately.

In the lung airway epithelium model, cytokeratins which are found
in the cytoskeleton of the epithelial cells such as KRT4, KRT15, KRT17,
were upregulated in comparison to other models. Type II cytokeratin,
KRT4 is specifically detected in mucosal epithelial cells but not in the
basal cells (Blobel et al., 1984). However, type I cytokeratins, KRT15
and KRT17 are found mainly in the basal cells (Miller et al., 2020). These
cytokeratins offer resistance to mechanical stress and play a vital role in
differentiation of epithelial cells. Also, other markers like CSTA,
SCNN1B, SLC6A14, CYP4B1 were highly expressed in airway epithe-
lium. SCNN1B, which is a sodium channel epithelial 1 beta subunit, is
known to be enriched in alveolar type 1 cell and plays an essential role in
the maintenance of air-liquid homeostasis (Hummler and Planes, 2010).
CYP4B1, cytochrome P450 family 4 gene and SLC6A14, a solute carrier
family 6 gene are predominantly expressed in bronchial airway
epithelium (Boei et al., 2017) and recently SLC6A14 has been shown to
be involved in regulating cystic fibrosis (Ruffin et al., 2020). Many of the
prototypical genes used to characterise conducting airway epithelial
differentiation were not present within the panel, including secretory
(MUC5B, MUC5AC, SCGB1A1), multiciliated (FOXJ1, PIFO) markers.
Further characterisation of the model was addressed elsewhere (Dji-
drovski et al., 2022; Djidrovski et al., 2021).

Out of the top 10 differentially expressed genes for the immune
models MON and MAC, seven were found to be expressed in both. As the
monocytes were further differentiated towards alveolar macrophages, it
is unsurprising that these models contain an overlap in gene expression.
AQP1 and CD14 were highly expressed in both MAC and MON. Human
monocyte antigen, CD14 is a pattern recognition receptor which is
important for the innate immune response to pathogens (Villani et al.,
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2017; Wilgenburg et al.,, 2013; Wu et al., 2019). It is commonly
employed as a marker for monocytes but is also identified in alveolar
macrophages although to a lesser extent (Haugen et al., 1998). The
water channel aquaporin 1 (AQP1) is essential for the cellular water
regulation and plays a role in the immune response (to lipopolysac-
charide (LPS)) in both monocytes and macrophages (Rump et al., 2013;
Rump and Adamzik, 2018). TYROBP which is a tyrosine kinase binding
protein was one of the top upregulated genes in MON and is also well
known to be highly expressed in them (Bakker et al., 1999). However,
there were no strong evidence in the literature for their presence in
monocytes for the genes FMO1, SULT1C2, AMHR2.

In podocytes, ACTA1 (actin alpha 1) and HAPLN1 (Hyaluronan and
proteoglycan link protein 1) were identified as the top 2 upregulated
genes. Both actin cytoskeleton and extracellular matrix components help
in maintaining cellular structure and integrity and thereby help to
maintain intact glomerular basement membrane in order to provide
effective barrier. Recent study also confirms the presence of HAPLN1 in
human glomerular organoids (Hale et al., 2018). Other genes like,
PRUNE2, CDH6, TXNRD1 were among the top highly expressed genes in
podocytes but are not podocyte specific. Recent single cell sequencing
study shows expression of CDH6 in early glomerular development;
however, it declines over podocyte maturation (Harder et al., 2019).
PRUNE2 has been shown to be present in iPSC-derived podocytes but
not in human glomeruli in vivo (Sharmin et al., 2016).

In proximal tubular cells EMX2 and HOXAS5 were the top two upre-
gulated genes. Empty spiracles homeobox (EMX2), a homeodomain
transcription factor, has been shown to be present in renal progenitors
and assists in directing renal nephrogenesis. EMX2 has recently been
utilized together with other transcription factors to produce renal tissues
from stem cells through direct reprogramming or using synthetic
mRNAs (Hiratsuka et al., 2019; Kaminski et al., 2016). Homeobox genes
are important in embryonic development. Even though it has been re-
ported that Homeobox A5 (HOXAS5) is expressed in the developing
kidney (Dony and Gruss, 1987; Hershko et al., 2003), we did not find
solid evidence for its expression in proximal tubular cells. Other genes
like retinol binding protein 1 (RBP1) and retinoic acid receptor alpha
(RARA) and antioxidants related genes like metallothionein (MT1M,
MTI1E) and peroxiredoxin (PRDX2) were highly expressed in PT in
comparison to other cell types.

Brain capillary endothelial cells, podocytes and proximal tubular
cells clustered closely in the PCA. This could be due to the fact that BBB
and proximal tubular cells share most of the ABC and SLC transporters,
metabolizing enzymes and junctional proteins. Several studies,
including ours, recently questioned the endothelial characteristics of
multiple BBB differentiation protocols, reporting the lack of expression
of vascular lineage genes and the presence of epithelial associated genes
which could contribute to the proximity in the clustering (Delsing et al.,
2018; Lippmann et al., 2020; Lu et al., 2021; Vatine et al., 2019; Wellens
et al., 2021). As blood-brain barrier endothelial cells develop in close
proximity of other cells of the neurovascular unit (pericytes and astro-
cytes), co-culturing with these cells of the neurovascular unit might
improve the model (Wellens et al., 2022). Likewise, renal cell types,
podocytes and proximal tubular cells, shared many common features,
especially extracellular matrix proteins. This impedes the appearance of
cell type specific genes in the top 10 list in these cell types particularly in
PT as these cells share common genes across several other cell types.
Also, in some of the models mainly PT and BBB, typical markers were
not present in the top upregulated genes list. This is largely because this
TempO-Seq targeted gene list (supplementary information 2) was spe-
cifically designed for studying toxicological mechanisms. Thus, key cell
type-specific characterisation markers for some of the cell types (for
example, LRP2 for PT, NPHS1, NPHS2 for podocytes, alveolar specific
secretory components etc.,) were absent in the list.

It is also critical to note that some of the genes that were upregulated,
could be directly related to differentiation factors used in the respective
protocols. For example, retinoic acid receptor agonists induced

Toxicology in Vitro 98 (2024) 105826

transcription of genes related to retinoic acid signalling. In the case of
podocytes, PT and BBB there is a strong upregulation of genes like
HAPLN1. Retinoic acid stimulates human chorionic gonadotropin (hCG)
secretion which might in turn increase HAPLN1 expression (Chou et al.,
1983; Kato and Braunstein, 1991; Liu et al., 2010; Roulier et al., 1996).
This might provide a possible explanation for HAPLN1 being one of the
highest differentially expressed genes in both BBB and PODO and
showing increased expression in PT (Fig. 3), as all three protocols make
use of retinoic acid (Fig. 1).

5. Conclusion

Cross-comparison performed in this study on transcriptomic level
alteration is first of its kind to understand the differences and similarities
between different iPSC-derived intended target models. Targeted tran-
scriptomic expression profiles are not sufficient to fully explore the de-
gree of similarities and differences between the models derived from
iPSC. Nevertheless, most of the genes identified as uniquely expressed in
one model, using an unbiased approach, appear relevant for character-
isation of the intended target cell types. This global cross comparison
across different models provides in depth information on how these
differentiation protocols affect the cells. Additionally, they allow to
identify markers that are able to characterise these cells which could
complement gold-standard cell-specific characterisation markers. Be-
sides characterisation of intended cell types, the transcriptional
expression of those genes, considered as markers, can also serve as a
control to assess the reproducibility of differentiation protocols, in
particular when different iPSC lines are used. In addition, it gives in-
formation on how each models behave, which pathways are activated in
certain cell types in comparison to others which could be explored
further to improve the models. Full transcriptomic testing will be
employed in the future to get thorough knowledge on these models and
also to compare with in vivo tissue specific expression profiles. Finally,
the possibility to separate the intended target cell types into the three
germ layer groups further illustrate the great potential of the use of iPSC-
derived cell models to address a wide range of biological questions
including the nature of the mechanisms responsible for tissue specific
response to chemicals in toxicology.
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