716 research outputs found

    Color texture discrimination using the principal geodesic distance on a multivariate generalized Gaussian manifold

    Get PDF
    We present a new texture discrimination method for textured color images in the wavelet domain. In each wavelet subband, the correlation between the color bands is modeled by a multivariate generalized Gaussian distribution with fixed shape parameter (Gaussian, Laplacian). On the corresponding Riemannian manifold, the shape of texture clusters is characterized by means of principal geodesic analysis, specifically by the principal geodesic along which the cluster exhibits its largest variance. Then, the similarity of a texture to a class is defined in terms of the Rao geodesic distance on the manifold from the texture's distribution to its projection on the principal geodesic of that class. This similarity measure is used in a classification scheme, referred to as principal geodesic classification (PGC). It is shown to perform significantly better than several other classifiers

    Multivariate texture discrimination based on geodesics to class centroids on a generalized Gaussian Manifold

    Get PDF
    A texture discrimination scheme is proposed wherein probability distributions are deployed on a probabilistic manifold for modeling the wavelet statistics of images. We consider the Rao geodesic distance (GD) to the class centroid for texture discrimination in various classification experiments. We compare the performance of GD to class centroid with the Euclidean distance in a similar context, both in terms of accuracy and computational complexity. Also, we compare our proposed classification scheme with the k-nearest neighbor algorithm. Univariate and multivariate Gaussian and Laplace distributions, as well as generalized Gaussian distributions with variable shape parameter are each evaluated as a statistical model for the wavelet coefficients. The GD to the centroid outperforms the Euclidean distance and yields superior discrimination compared to the k-nearest neighbor approach

    A classification scheme for edge-localized modes based on their probability distributions

    Get PDF
    We present here an automated classification scheme which is particularly well suited to scenarios where the parameters have significant uncertainties or are stochastic quantities. To this end, the parameters are modeled with probability distributions in a metric space and classification is conducted using the notion of nearest neighbors. The presented framework is then applied to the classification of type I and type III edge-localized modes (ELMs) from a set of carbon-wall plasmas at JET. This provides a fast, standardized classification of ELM types which is expected to significantly reduce the effort of ELM experts in identifying ELM types. Further, the classification scheme is general and can be applied to various other plasma phenomena as well.EURATOM 63305
    corecore