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INTRODUCTION 

Ohmic plasmas: broadband contribution drops in the core 

Evolution of the 𝑬𝑩𝑩 basin with increasing 𝑷𝑰𝑪𝑹𝑯 & 𝑷𝑳𝑯 

Nonlinear curve fitting (or constrained optimization): 𝑆𝑓𝑖𝑡 = 𝑪𝑫𝑪 + 𝑪𝑳𝑭 + 𝑪𝑩𝑩 + 𝑪𝑵  

 Drop from 𝐸𝐵𝐵>30% outside 𝜌𝑞=1 to 𝐸𝐵𝐵<10% in the core (Fig. 2). 

 The 𝐸𝐵𝐵 basin location (Fig. 2) and width (Fig. 3) linked to the q=1 surface. 

Figure 2. Radial profiles of 𝐸𝐵𝐵 for different 𝑞𝜓. The median 

value is calculated from a small radial interval. The BB basin is 

indicated by the shaded area with basin width indicated by w.  

Figure 6. Evolution of 𝐸𝐵𝐵 within the 𝐸𝐵𝐵 basin w.r.t. 𝑞𝜓. 

 The broadband contribution (𝐸𝐵𝐵) from the decomposition of turbulence spectrum drops in 

the core and its location and width are linked to the q=1 surface in Tore Supra database. 

 In Ohmic plasmas, 𝐸𝐵𝐵 is higher in SOC regime than in LOC regime. 

 Inside the basin, 𝐸𝐵𝐵 trend w.r.t. 𝑞𝜓  is opposite for LOC () and SOC (). 

 The 𝐸𝐵𝐵 increases much faster with 𝑃𝐼𝐶𝑅𝐻 than with 𝑃𝐿𝐻. 

 The basin disappears for moderate 𝑃𝐼𝐶𝑅𝐻 while it remains at higher 𝑃𝐿𝐻. 

 Objective: Systematic study of turbulence properties from fluctuation reflectometer [1] data 

 Motivation: discovery of general trend or global pattern 

 Methodology: Decomposition of spectrum  parameter reduction  database  

Figure 4. (a) Density profiles and (b) Difference of the 

cutoff positions from interferometry w.r.t. reflectometry at 

different radial positions. 

 The evaluation of 𝛿𝑛 𝑛  from the decomposition components is underway. 

 Includes 350,000 acquisitions from 6,000 Tore Supra discharges 

 Contains Ohmic, ICRH, LH, limited ECRH plasmas 

 Global (𝐵𝑡, 𝐼𝑝,…), local (𝑛𝑒, 𝑇𝑒,…) & diag. (𝐹, 𝜌𝑐 …) parameters 

 Turbulence properties (𝑬𝑩𝑩,𝑊𝐵𝐵,…) 

Database 

 Within the 𝐸𝐵𝐵 basin   

 LOC: 𝐸𝐵𝐵  with 𝑞𝜓  

 SOC: 𝐸𝐵𝐵   with 𝑞𝜓  
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Figure  9. Fluctuation level calculated  from typical 

discharges. In Ohmic, ICRH and LH plasmas. 
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Figure 8. Radial profiles of 𝐸𝐵𝐵 in Ohmic, ICRH and LH plasmas. 

 The radial profiles of 𝐸𝐵𝐵 recover in a systematic study (Fig. 8 ) the 

observations as in the Ohmic, ICRH & LH dedicated shots (Fig. 9).  

 Within the basin, 𝐸𝐵𝐵  with 𝑃𝐼𝐶𝑅𝐻  (Fig. 7a).  

 The basin disappears at high 𝑃𝐼𝐶𝑅𝐻  (very weak basin above 2.5 MW in Fig. 7a). 

 The 𝐸𝐵𝐵 basin remains even for  𝑃𝐿𝐻 > 3 MW (Fig. 7b). 

 Large scatter of 𝐸𝐵𝐵 might be linked to the turbulence evolution during the 

sawteeth activity, which needs further study. 
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 The systematic radial shift toward the HFS 

w.r.t 𝜌𝑞=1 may be due to an underestimation 

of the core density profile measured by 

interferometry (Fig. 4).  

Figure 3. Half-width of 𝐸𝐵𝐵 basin vs q=1 position 

 The global trend of  𝐸𝐵𝐵 remains in LOC and SOC regimes. 

 In all radial positions, 𝐸𝐵𝐵
𝑆𝑂𝐶 > 𝐸𝐵𝐵

𝐿𝑂𝐶.  

 Fitting functions:  

 DC & LF components: Gaussian functions 

 The BB turbulence: 2 options  

 The Generalized Gaussian (GG) function         

   𝐶𝐵𝐵
𝐺𝐺 =  𝐴𝐵𝐵 exp −

𝑓 − 𝜇𝐵𝐵

𝛼BB
 
𝛽𝐵𝐵

 

 FFT of the Taylor function [5]  

   𝐶BB
Taylor = 𝐴𝐵𝐵 × 𝐹𝐹𝑇 exp −Δ𝐵𝐵(𝑡 − 𝜏𝐵𝐵 + 𝑒

−𝑡/𝜏𝐵𝐵) × exp (𝜇𝐵𝐵)  

Figure 1. Typical spectrum with different 

components.  

 Decomposition of frequency spectrum 

 The direct current (DC) component 

 The low-frequency (LF) fluctuations  

            MHD, ZFs, … 

 The broadband (BB) fluctuations  

            turbulence 

 The noise (N) level: constant 

 Cost function (𝑆: normalized 

spectrum, 𝑆𝑓𝑖𝑡: fitting model, 𝑙𝑔 = 10 × 𝑙𝑜𝑔10) 

𝐹𝑐𝑜𝑠𝑡 = 𝟎. 𝟓 ×
𝒍𝒈 𝑺𝒇𝒊𝒕 − 𝒍𝒈 𝑺

𝟐

𝑨𝒍𝒈
+ 0.5 × 𝑆𝑓𝑖𝑡 − 𝑆

2
,  

𝐴𝑙𝑔 =  [lg 𝑆 ]2𝑑𝑓
𝑓max

𝑓𝑚𝑖𝑛

, S = 𝑆0  𝑆0(𝑓)
𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛

𝑑𝑓  

 Global convergence  

       multiple initial guesses 

Figure 5. Radial profiles of 𝐸𝐵𝐵 for different 𝑞𝜓 in LOC & SOC.  

Figure 1. Typical spectra fits (Taylor function for the BB). FFT calculated over 1025 points and 50% overlap. Figure 7. Radial profiles of 𝐸𝐵𝐵 with increasing ICRH and LH power under the condition 4 < 𝑞𝜓 < 5. 
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