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Abstract:

We address the scaling of the energy confinement time in tokamaks based on regression
analysis applied to the multi-machine H-mode database. We briefly summarize various
difficulties arising in estimating the scaling, either in terms of engineering quantities or
dimensionless parameters. We invoke geodesic least squares (GLS) regression, an optimiza-
tion technique that was recently developed to handle challenging regression problems in a
robust way. Finally, possible routes are indicated to further increase the confidence in the
global confinement dependencies and the predictions for future machines.

1 Introduction

The standard scaling law for the global energy confinement in H-mode tokamak plas-
mas provides a guideline for machine design and planning of operational scenarios. In
addition, it is used as a benchmark to assess the quality of the confinement in present
experiments. The currently recommended form of the scaling law is IBP98(y,2), which
was obtained from a multi-machine database assembled using careful selection criteria [1].
The scaling law essentially provides the energy confinement time in terms of a number
of key plasma quantities. The free parameters in this expression, i.e. the exponents in
the power law, were estimated using statistical regression analysis based on ordinary least
squares. Since then, however, the database has been expanded and different data selection
criteria have been used, as well as different regression models and estimation methods.
Unfortunately, depending on these various decisions, the estimated regression parameters
can vary considerably. There is thus substantial uncertainty in the general dependence
of the confinement on plasma and machine conditions across multiple machines. As a
result, the confinement enhancement factor H98(y,2) (i.e. the ratio of an observed confine-
ment time to the prediction given by the IBP98(y,2) scaling law) might give misleading
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results in some instances and the predicted confinement times for next-step devices may
be unreliable.

Given the continuing essential role played by the confinement scaling law, activities
aiming at updating the scaling law using recent data are of clear importance. In this
paper, we concentrate on the role of the regression method used to estimate the scaling
parameters. The motivation is that, in light of the complexity and uncertainty in the
confinement database, a robust regression technique is required that returns consistent
estimates. Specifically, we present results of the confinement scaling, both in terms of en-
gineering and dimensionless parameters, obtained with a robust technique called geodesic
least squares regression (GLS). GLS was recently developed in the context of fusion scaling
laws and applied to estimation of the scaling for the L-H power threshold [2].

The outline of the paper is as follows. The main difficulties concerning estimation and
interpretation of the confinement scaling law are discussed in Section 2. We then very
briefly mention the basics of GLS regression in Section 3, followed by a presentation of
our results of the application of GLS to the confinement data in Section 4. Section 5
concludes the paper and lists some opportunities for future work.

2 The IPB98(y,2) scaling law

The mathematical form of the IPB98(y,2) scaling law for the thermal energy confinement
time τE,th (s) in ELMy H-mode tokamak plasmas is given as follows, in terms of engineering
variables:

τE,th = β0 I
βI
p BβB

t n̄βne P βP
l RβR κβκ εβεMβM

eff . (1)

Here, Ip is the plasma current (MA), Bt the vacuum toroidal magnetic field (T), n̄e the
central line-averaged electron density (1019 m−3), Pl the net input power (MW) (corrected
for losses due to charge exchange with the heating beam and unconfined orbits), R the
plasma major radius (m), ε = a/R the inverse aspect ratio (with a the plasma minor
radius in m), κ the plasma elongation and Meff the effective atomic mass. IPB98(y,2)
was derived by fitting (1) to the so-called ‘standard set’ in the 1997 version DB3 of the
global H-mode confinement database [1, 3, 4].1 Usually the estimation is performed on
a logarithmic scale, turning the problem formally into a linear regression analysis with
known properties of the statistical estimators. Furthermore, in the case of IPB98(y,2) the
Kadomtsev constraint was imposed, as well as a fixed exponent βB for the magnetic field.
The latter constraint was motivated by the observation that estimates of the exponents
for Bt and Ip turn out to be linked, reflecting the poor condition of the data set w.r.t. the
safety factor [5]. Consequently, a value of βB = 0.15 was fixed, at the time roughly in line
with scans in individual devices (see [6], pp. 317–318). Poor conditioning of the database
w.r.t. κ was also noticed [5]. The estimates of the regression parameters in IPB98(y,2)
are shown in Table I.

In later work, emphasis shifted to alternative statistical algorithms to perform the fit.
Indeed, it was noticed that the error bar on the predictor variable Pl (ca. 14%) is compa-

1To be precise, version DB2.8 was used, including NBI discharges only (see [1], pp. 2207–2208).
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TABLE I: REGRESSION ESTIMATES FOR THE IPB98(Y,2) SCALING LAW
AND RESULTS OF OUR ANALYSIS USING OLS, MAP AND GLS (LIN-
EAR ON THE LOGARITHMIC SCALE (‘LIN.’) AND NONLINEAR ON THE
POWER LAW (‘POW.’)) BASED ON THE ENGINEERING FORM OF THE
SCALING LAW.

β0 βI βB βn βP βR βκ βε βM τ̂E,th (s)

IPB98 0.056 0.93 0.15 0.41 −0.69 1.97 0.78 0.58 0.19 4.9

OLS
Lin. 0.049 0.78 0.32 0.43 −0.67 2.22 0.38 0.57 0.18 4.2
Pow. 0.055 0.76 0.42 0.41 −0.81 2.40 0.97 0.62 −0.22 3.3

MAP
Lin. 0.056 0.89 0.20 0.35 −0.59 1.94 0.20 0.36 0.17 4.1
Pow. 0.053 0.88 0.21 0.37 −0.59 1.96 0.21 0.37 0.13 4.1

GLS
Lin. 0.054 0.73 0.37 0.44 −0.72 2.33 0.53 0.72 0.20 3.9
Pow. 0.048 0.66 0.44 0.49 −0.74 2.48 0.64 0.84 0.19 4.0

rable to that on the response variable τE,th (ca. 20%) [3]. This is a violation of one of the
main assumptions underlying OLS regression, where the predictor variables are taken to
be infinitely precise quantities (or at least with error bars that are negligible compared
to the uncertainty on the response variable). Therefore, an error-in-variables (EIV) tech-
nique was employed, based on a principal component analysis, and some differences in
the scaling law estimates were observed, as compared to the OLS results [3]. However, it
was also noticed that the exponents for n̄e, Pl and R were rather sensitive to the assumed
error bars on the plasma thermal energy Wth (where τE,th = Wth/Pl) [3, 5]. Consequently,
the EIV estimates were deemed unreliable and therefore the ’98 result remained the rec-
ommended scaling law. We argue here that a certain degree of arbitrariness in the EIV
results does not make OLS a better alternative. Indeed, it is important to realize that,
although OLS, due to its simplicity, yields a single estimate without any further degrees
of freedom, many assumptions are implicit that can equally well invalidate its results [2].

In order to make the link of the confinement scaling with theory more clear, it is
furthermore customary to express the scaling in terms of dimensionless parameters. We
follow [5] in the choice of variables, yielding

ωciτE,th = α0 ρ
∗αρ β

αβ
t ν∗αν q

αq
95 κ

ακ εαεMαM
eff . (2)

In this expression, ωci is the ion gyro-frequency in units of 108 rad s−1, ρ∗ is the nor-
malized ion Larmor radius, βt the plasma pressure normalized by the toroidal field, ν∗

the normalized collisionality and q95 the safety factor at 95% of the toroidal flux. These
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variables can be calculated from the engineering variables as follows:

ρ∗ =

(
2mp

3e2

)1/2(
MeffWth

V n̄e

)1/2
1

BtεR
, β =

4µ0

3

Wth

V B2
t

,

ν∗ =
15e4 ln Λei

4π3/2ε20µ0

V 2R2Btε
1/2n̄3

eκ

W 2
thIp

.

Here, mp is the proton mass, e the elementary charge, ε0 and µ0 the permittivity, resp.
permeability of the vacuum, ln Λei the Coulomb logarithm for electron-ion collisions, V
the plasma volume and all variables are in SI units.

However, reliable estimation of the exponents in the dimensionless form of the scaling
law is substantially more difficult than in the case of the engineering parameters. The
variables ρ∗, βt and ν∗ are affected by considerable error bars, increasing the necessity for
a statistical method that can properly handle uncertainty in all variables. Furthermore,
concern has been raised about the collinearity of several dimensionless variables, in par-
ticular due to the correlation between βt and ε in the database (low aspect ratio devices
tended to operate at higher βt) [7]. This further complicates the estimation. Some propos-
als have been made to substitute the dimensionless quantities by other variables that are
less correlated and less affected by uncertainty [3, 6], but it is not clear to what extent this
has really improved the situation (it is certainly fruitless under the OLS assumptions [8]).

In fact, it is common practice to derive the dimensionless form of the scaling law from
the estimates obtained by performing regression analysis on the engineering expression,
simply by transforming the exponents. The result for IPB98(y,2) is given in Table II.
The scaling with ρ∗, βt and ν∗ is of particular interest. Indeed, most estimates for the
ρ∗ dependence are consistent with ωciτE,th ∼ ρ∗−3, which has a known interpretation in
terms of a gyro-Bohm scaling [1]. The negative scaling with βt is unfavorable at high-
β operation and has been the subject of much investigation [5]. Finally, the almost
negligible dependence of confinement on ν∗ suggested by the IPB98 scaling is not in line
with a stronger negative scaling seen in dedicated scans on individual machines [5].

Direct estimation on the dimensionless form of the scaling law was done in [7] using a
classic EIV analysis and a Bayesian procedure, but the estimates were deemed unreliable
for prediction. In the present paper, we make another attempt using GLS regression.

3 Geodesic least squares regression

The idea behind OLS regression for a single response variable y is to estimate the param-
eters βk (k = 0, . . . , p) of the regression model by minimizing the difference between, on
the one hand, the prediction of the values of y, given n measurements xij of the m pre-
dictor variables xj, and, on the other hand, the actually observed values yi (i = 1, . . . , n,
j = 1, . . . ,m). However, this only takes into account the statistical error on y, whereas
the xj may have non-negligible uncertainty as well. This issue is also addressed by classic
EIV methods based on principal component analysis, and it is especially important in the
present context, when regressing directly on the dimensionless form (2) of the scaling law.
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TABLE II: REGRESSION ESTIMATES FOR THE IPB98(Y,2) SCALING
LAW IN DIMENSIONLESS FORM, TRANSLATED FROM THE EXPO-
NENTS OF THE ENGINEERING PARAMETERS IN TABLE I, AS WELL
AS THE RESULTS OF OUR ANALYSIS USING OLS, MAP AND GLS (LIN-
EAR ON THE LOGARITHMIC SCALE (‘LIN.’) AND NONLINEAR ON THE
POWER LAW (‘POW.’)) DIRECTLY ON THE DIMENSIONLESS QUANTI-
TIES.

α0 αρ αβ αν αq ακ αε αM

IPB98 7.21× 10−8 −2.70 −0.90 −0.01 −3.0 3.3 0.73 0.96

OLS
Lin. 1.36× 10−7 −2.45 0.36 −0.39 −0.48 0.89 −1.61 1.46
Pow. 1.51× 10−6 −2.20 0.33 −0.43 −0.24 0.92 −0.45 1.12

MAP
Lin. 4.84× 10−7 −2.24 0.28 −0.39 −0.55 0.98 −1.34 1.15
Pow. 1.33× 10−6 −2.06 0.23 −0.40 −0.55 1.01 −1.08 1.17

GLS
Lin. 1.86× 10−8 −2.91 0.64 −0.38 −0.35 0.50 −2.25 1.87
Pow. 0.55× 10−6 −2.62 0.45 −0.43 −0.53 0.71 −1.55 1.46

Furthermore, the errors on the various quantities may be different from one measurement
to another. In the present context, the relative errors on the quantities in the global H-
mode database indeed differ between machines. A way around this is to consider the more
general maximum likelihood method (ML), which maximizes the probability distribution
of the response variable conditional on the predictor variables. For the remainder of the
paper we will assume normally distributed uncertainties, reducing ML to the following
optimization problem:

{β̂k} = arg max
{βk}

pm,

pm ≡
1√

2πσm

exp

−
n∑
i=1

[
yi − f

(
{xij}, {βk}

)]2

2σ2
m

 .

Here, f is the regression function (possibly nonlinear), while the measurements yi are
assumed to be mutually independent, and similar for the xij. The standard deviation
σm in general describes uncertainty on the response and the predictor variables. We
refer to σm as the standard deviation of the modeled distribution pm, since it depends
on the regression model: the uncertainty on the xj propagates through f . Incidentally,
when suitable prior distributions are introduced on the βk in a Bayesian framework, ML
becomes the maximum a posteriori method (MAP) [2], which we will compare with in
our regression experiments.

There is one flaw in this reasoning, which is shared by most regression methods, in-
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cluding many of the more sophisticated. It assumes that σm is indeed the correct standard
deviation on the yi, leaving no room for unforseen sources of uncertainty. Still, such ad-
ditional uncertainties often occur, e.g. due to outliers in the data, plasma fluctuations
or transients, uncertainty in the regression model, etc. The GLS regression method ac-
commodates these situations by considering, apart from pm, another distribution for the
dependent variable that makes as few assumptions about the data as possible. We call
this the observed distribution po, and here we will assume only that it is a normal dis-
tribution centered on each measurement yi, with some unknown standard deviation σo

that is to be estimated from the data. As such, every measurement yi is actually treated
as a probability distribution and GLS aims to minimize the overall difference between
the modeled and observed distributions, just like OLS minimizes the overall difference
between the modeled and observed values of y. As a distance measure between probabil-
ity distributions we choose the geodesic distance (GD) rooted in information geometry,
which is a geometric approach to probability theory [2]. Hence, the p + 2 parameters
β0, . . . , βp, σo are estimated through the following optimization problem:

{β̂k, σ̂o} = arg min
{βk,σo}

GD2

[
n∏
i=1

po(y|yi, σo),
n∏
i=1

pm(y|{xij}, {βk})

]
.

It has been demonstrated that, despite its simplicity, GLS consistently outperforms several
other regression methods in various challenging regression tasks [2]. Nevertheless, several
aspects of the GLS method are still open for improvement, as part of future work.

4 Confinement scaling

We now apply the GLS technique to estimate the confinement scaling law using the DB3
database. With the additional requirement to calculate the dimensionless parameters,
the number of entries in the database was limited to 1296 from 9 devices. The database
contains error estimates for each of the variables, in terms of percentages. We use these
relative errors to derive the standard deviations that are required in the GLS method.
As mentioned before, the error bar on a specific quantity, in particular the measured
confinement time, can be different from one machine to another. Therefore, for each
machine we need a parameter representing the observed standard deviation, which was
considered as a relative error w.r.t. the measurements (observed mean) for each variable.
We did not impose any constraints and the data were not weighted.

Some first results of the scaling with engineering parameters were presented in [9],
where the influence of the constraint βB = 0.15 was also studied. In Table I we repeat
the analysis on the present database and, in addition to the comparison with OLS, we
also mention the results of a regression analysis by means of MAP. As argued in [2, 9], it
is worthwhile to carry out the analysis on the original power law, i.e. without taking the
logarithm, as this may artificially influence the results. Hence, Table I mentions both the
results using linear regression on the logarithmic scale and power-law regression. If all
assumptions underlying OLS were fulfilled, the results would ideally be the same. That
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this is not the case, in particular for the exponents related to the geometrical quantities
and the atomic mass, as well as the predicted confinement time, indicates that OLS
regression on the global H-mode database may be problematic. In contrast, the results
obtained using MAP and GLS are much more consistent, whether log-linear or power-law
regression is used, although there are still differences between the estimates of these two
more advanced methods. Furthermore, the trade-off between βI and βB can be noticed,
while the largest discrepancies between MAP and GLS occur again in the exponents for
the geometrical parameters and Meff . In addition, the confinement time predictions for
ITER are given in the table, under the conditions Ip = 15 MA, Bt = 5.3 T, n̄e = 10.3×1019

m−3, Pl = 87 MW, R = 6.2 m, κ = 1.7, ε = 0.32 and M = 2.5. Error bars on all estimates
will be given in a later, more comprehensive analysis.

Next, Table II contains the parameter estimates using OLS, MAP and GLS, obtained
by direct regression on the dimensionless form (2) of the scaling law. It is noteworthy that
the αρ estimates suggest a Bohm-like scaling (ωciτE,th ∼ ρ∗−2), while the GLS results point
somewhat more at gyro-Bohm scaling. Interestingly, the unfavorable scaling with βt has
been replaced by a slightly positive dependence in all regression estimates. However, in the
light of the tendency of collinearity between βt and ε, combined with a sign change of the
ε scaling, this should be interpreted with great care. It is clear that further enhancements
to the database could be very valuable in order to resolve this uncertainty. On the
other hand, we aim to investigate in future work how GLS can be enhanced in order to
better deal with situations of near-collinearity. Further results to be noted, compared
to IPB98(y,2), are the stronger negative dependence on ν∗, as well as the much weaker
dependence on κ, both of which are also captured by OLS and MAP.

5 Conclusion

We have addressed the energy confinement scaling law in tokamaks, based on regression
analysis using data from the global H-mode database. The advantages of geodesic least
squares regression were pointed out, leading to enhanced robustness of the method. This
was demonstrated by regression analysis applied to the confinement scaling, on a loga-
rithmic scale or with the original power-law model. With this work, we explicitly aim
to increase the robustness and consistency between regression analysis on the scaling law
in terms of engineering quantities or dimensionless variables. However, the initial results
reported in this paper indicate that further work, both to improve the database condition-
ing as well as the robustness of the regression analysis, may be necessary to accomplish
this goal. As far as GLS regression is concerned, we intend to improve the optimization
algorithm used to find the minimum aggregated geodesic distance between the modeled
and observed distributions. In addition, a Bayesian analysis returning a joint posterior
distribution for the regression parameters would provide certain advantages compared to a
pure optimization-based approach. Finally, visualization of the database using projection
methods may contribute to identifying voids or excessive outliers in the database.
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