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Gaussian process tomography1,2 (GPT) is a recently developed tomography method applied earlier to soft X-

ray (SXR) spectroscopy on WEST. The short execution time of the algorithm makes GPT an important 

candidate for providing real-time information on impurity transport and for fast MHD control. In earlier work, 

GPT has shown its flexibility by providing good reconstruction results without background information about 

the magnetic equilibrium. On the other hand, information about the magnetic flux surface geometry can in 

general be useful for additional regularization of the solution. In this paper, we develop a way to take into 

account the equilibrium information, by constructing a covariance matrix of the prior Gaussian process 

depending on the flux surface geometry. The GPT method is validated using synthetic SXR emissivity profiles 

relevant to WEST plasmas, and compares favorably with the classical algorithm based on minimization of the 

Fisher information.  

I. INTRODUCTION 

The tokamak WEST – for Tungsten (W) Environment 

in Steady-State Tokamak – has started operating from the 

end of 2017 as a testbed for the ITER divertor components 

in long pulse operation. In this context, radiative cooling of 

heavy impurities like W is a critical issue for the plasma 

core performance. Thus, reliable tools are required to 

monitor the local impurity density and avoid W 

accumulation. Soft X-ray (SXR) spectroscopy is a 

diagnostic technique that has the potential to deliver 

valuable information in this respect. This diagnostic can 

provide very good temporal resolution (up to 1 MHz), 

which is sufficient for MHD activity and impurity transport 

studies. Particularly, the plasma is optically thin for SXR 

radiation in the range from 1 keV to 15 keV, which makes 

SXR tomography a powerful tool for studying core plasma 

physics.3 The tomography problem essentially involves the 

prediction of high-dimensional physics parameters by 

inversion of a limited number of measurements. This is an 

ill-posed problem, as the number of measurements (SXR 

line integrals) is always lower than the number of unknowns 

(emissivity value in each cell). There exists a variety of 

reconstruction algorithms to solve the inversion problem. In 

the past, various tomographic reconstruction techniques 

have been applied to SXR, such as the Cormack method,4 

the maximum entropy method,5 the minimum Fisher 

information method,6 etc. Particularly the minimum Fisher 

information technique has been widely adopted in the fusion 

community. This reconstruction method involves 𝜒² 

optimization, regularized by the Fisher information. 

Intuitively, the goal is to find the least complex solution that 

is compatible with the data. The method is often 

implemented, e.g. on Tore Supra and WEST,7 using 

additional information concerning the location of the 

equilibrium magnetic flux surfaces, obtained from magnetic 

measurements. This paper is focused on a recently 

developed tomography technique, namely Gaussian process 

tomography (GPT) applied to the WEST SXR spectroscopy 

setup. In previous work8, we have showed the excellent 

performance of this method even without relying on 

information regarding the magnetic equilibrium. This is an 

important asset of GPT in case the equilibrium information 

is unreliable or in special situations such as in the presence 

of poloidally asymmetric impurity concentrations. On the 

other hand, in routine applications of SXR tomography, 

equilibrium information can be very useful for additional 

regularization of the tomographic inversion. In this paper, 

we incorporate for the first time magnetic equilibrium 

information into the GPT technique. Combined with the 

computational efficiency of the method, this makes GPT an 

excellent tool for routine application in real time. 

II. GAUSSIAN PROCESS TOMOGRAPHY 

A. WEST soft X-ray diagnostic system  

The WEST SXR diagnostic system is presently being 

commissioned with two triple-gas electron multiplier 

(GEM) cameras, located in the same toroidal cross-section 
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to allow tomographic reconstruction.9 The triple-GEM 

detector is based on photoionization in a flowing gas 

mixture subjected to an electric field and enclosed in Mylar 

foil. As depicted in Fig. 1, photoelectrons are produced in 

the first conversion layer and drift towards a perforated 

copper-clad Kapton foil. A voltage is applied to the foil, 

causing electron avalanching, hence amplifying the detector 

signal. The process is repeated in two successive GEM foils, 

followed by charge collection on the anode strips (pixels). 

The GEM detectors work in photon counting mode with 

energy discrimination. 

 
Fig. 1. Schematic of the triple GEM, which implements three copper-clad Kapton 

foils. After a signal amplification, the electrons are collected on the anode strips. 

Compared to photodiode detectors, the GEM concept 

separates the regions where photoionization, amplification 

and detection takes place. An additional advantage is that 

electrons travel fast to the anode in about 50 ns, while the 

GEM holes are ion-free after ca. 1 µs. Therefore, the system 

has high-rate capabilities of ca. 106-107 ph.s-1.mm-2. Further 

advantages of GEM detectors are their compactness, good 

spatial and temporal resolution and good neutron-resistance.  

 

Fig. 2. Tomographic capabilities of the WEST SXR system based on GEM detectors. 

The horizontal camera views along 128 lines-of-sight. The vertical camera is inside 

the vertical port and is coupled to 75 sight lines. 

As shown in Fig. 2, one of the cameras of the WEST SXR 

diagnostic views along the horizontal direction through 128 

lines-of-sight (LOS) from the low-field-side to the high-

field-side. The other camera is located at the top of the 

device, viewing downwards along 75 lines-of-sight. Hence, 

the majority of the core plasma region is covered with a 

good spatial resolution (~1 cm in the equatorial plane). The 

GEM system can provide a temporal resolution for real-time 

analysis of 1 kHz (five energy windows within an energy 

range of 2-15 keV), while the full spectrum will be stored 

off-line at a rate of up to 10 kHz, with a view to more 

detailed analysis and study of fast plasma phenomena. This 

setup provides good capabilities for studying fast MHD 

activity and impurity transport, in particular for tungsten 

transport. 

A common and simple approach to discretize the emissivity 

field in a poloidal cross-section uses a square grid. We here 

impose a 100 × 100 grid comprised of square cells with a 

dimension of 16 mm × 16 mm. The SXR emissivity within 

each pixel can reasonably be assumed to be constant, so the 

SXR line-integrated emissivity 𝑑̅𝑚 along 𝑚 viewing chords 

can be written in the following matrix form:    

𝑑̅𝑚 = 𝑅̿𝑚×𝑛 ∙ 𝐸̅𝑛 + 𝜀.̅                          (1) 

Here, 𝐸̅𝑛  is the unknown vector of local emissivities in 𝑛 =

104 cells, while 𝑅̿ is the geometry matrix, whose elements 

𝑅𝑖𝑗 represent the physical length of chord 𝑖 through cell 𝑗. 𝜀  ̅

denotes an error term to account for measurement 

uncertainty, which is usually limited to statistical errors 

only.  

 

B. Concepts of Bayesian probability theory 

In fusion, as in many scientific activities, we do not have  

direct access to the physical properties of the system under 

study, in this case the plasma. The experimentalist must 

instead devise a measurement technique for a diagnostic, 

which returns numbers (usually voltages) that are related to 

the quantity of interest. If the properties of the physical 

system were known precisely, together with the full details 

of the measurement process, the corresponding 

measurement values could be computed straightforwardly. 
This would require the measurement process to be encoded 

in a mathematical model: the forward model. In practice, a 

forward model is a simplified mathematical representation 

of the measurement process, possibly focusing on one 

important aspect, such as the model in Eq. (1). In this paper, 

we use Bayesian probability theory for reconstructing a 

probability distribution for the quantities of interest (here 

𝐸̅𝑛), starting from a distribution of the measurements (here 

the line integrals 𝑑̅𝑚), through the forward model (1). Using 

Bayes’ formulae, the SXR tomography problem can be 

expressed in the following form: 

𝑝(𝐸̅𝑛|𝑑̅𝑚) =
𝑝(𝑑̅𝑚|𝐸̅𝑛) 𝑝(𝐸̅𝑛)

𝑝(𝑑𝑚)
 ~ 𝑝(𝑑̅𝑚|𝐸̅𝑛) 𝑝(𝐸̅𝑛) ,              (2) 

𝑝(𝑑̅𝑚) = ∫ 𝑝(𝑑̅𝑚, 𝐸̅𝑛)𝑑𝐸̅𝑛 = ∫ 𝑝(𝑑̅𝑚|𝐸̅𝑛) 𝑝(𝐸̅𝑛)𝑑𝐸̅𝑛.        (3) 
 

𝐸̅𝑛 Vector of emissivity values in all 𝑛 pixels  

𝑑̅𝑚 Vector of 𝑚line-integrated GEM array measurements  

In Eq. (2), the likelihood term 𝑝(𝑑̅𝑚|𝐸̅𝑛)  measures the 

mismatch between the measured line integrals 𝑑̅𝑚 and their 

predictions by the forward model, under the assumption of 

some emissivity field 𝐸̅𝑛 . The evidence (marginal 

likelihood) 𝑝(𝑑̅𝑚)  depends on the particular forward 

measurement model, which we will assume to be fixed. 

Therefore, it can be considered as a normalization factor, 

independent of the emissivity. The posterior probability 

distribution 𝑝(𝐸̅𝑛|𝑑̅𝑚)  quantifies our uncertainty on the 

estimated emissivity field, given the model, prior 

knowledge and the measured data. Thus, Bayesian inference 



   

yields probabilities for all possible results consistent with 

the model. 

C. Gaussian process framework 

Gaussian process tomography (GPT) is a new technique 

whereby the prior distribution regularizes the tomographic 

reconstruction process, by imposing a smoothness level 

dictated by the correlation between pixels. Briefly, a 

Gaussian process is a generalization of the multivariate 

normal (Gaussian) distribution to a function space. It is 

described by a mean function 𝜇̅ and a covariance function Σ̿, 

where  𝐺𝑃~𝒩(𝜇̅, Σ̿) . Being nonparametric, Gaussian 

process tomography does not assume any functional form 

for the emissivity field, hence leaving a lot of flexibility. 

Instead, the emissivity field is regularized through the 

covariance matrix of the Gaussian process. Specifically, 

GPT assumes that the prior joint distribution of the 

emissivity in the 𝑛 cells with coordinates  𝑟𝑖 is multivariate 

Gaussian with covariance matrix 𝛴𝐸 given by: 

 

𝛴̿𝐸 = (
𝑘(𝑟1⃑⃑⃑ ⃑, 𝑟1⃑⃑⃑ ⃑) ⋯ 𝑘(𝑟1⃑⃑⃑ ⃑, 𝑟𝑛⃑⃑⃑⃑ )

⋮ ⋱ ⋮
𝑘(𝑟𝑛⃑⃑⃑⃑ , 𝑟1⃑⃑⃑ ⃑) ⋯ 𝑘(𝑟𝑛⃑⃑⃑⃑ , 𝑟𝑛⃑⃑⃑⃑ )

) .     (4) 

Here, 𝑘(𝑟𝑖⃑⃑⃑ , 𝑟𝑗⃑⃑⃑) = 𝑐𝑜𝑣[ 𝐸(𝑟𝑖⃑⃑⃑ ), 𝐸(𝑟𝑗⃑⃑⃑) ] , with 𝐸(𝑟𝑖⃑⃑⃑) = 𝐸𝑖  the 

emissivity in pixel 𝑖 , is the covariance kernel function, for 

which we choose the common squared-exponential form: 

 

 𝑘𝑆𝐸 = 𝜎𝑓
2𝑒𝑥𝑝(− (

𝒅⊥
2

2𝜎𝑙  ⊥
2 +

𝒅⫽
2

2𝜎𝑙  ⫽
2)) .                           (5) 

The idea is that the correlation of the emissivity among any 

two pixels depends on the distance between those pixels, 

adapted here to the flux surface geometry obtained from an 

equilibrium reconstruction. In particular, 𝒅⫽ represents the 

distance between pixel 𝑖 and pixel 𝑗 along a magnetic flux 

surface, and 𝒅⊥ is the perpendicular distance between the 

surfaces on which pixel 𝑖 and 𝑗 are located. This is where 

the magnetic equilibrium information is implemented in our 

algorithm. An example of a distance map is given in Fig. 3. 

Fig. 3. Example of a distance map w.r.t. to a reference pixel indicated by the green 

point. The color maps represent the perpendicular distance (left) and parallel distance 

(right) between the reference pixel and the other pixels. 

In turn, the kernel function depends on three parameters 

(summarized by the vector 𝜃̅ in the remainder): the signal 

standard deviation  𝜎𝑓 , and the perpendicular and parallel 

characteristic length scales   𝜎𝑙  ⊥  and 𝜎𝑙  ⫽ . In Bayesian 

terminology, these parameters of the prior distribution are 

called hyperparameters and in this case they determine the 

smoothness of the emissivity field. In principle, the 

hyperparameters can be marginalized from the problem (i.e. 

integrated out), but this would greatly increase the 

computational complexity of the method, thereby defeating 

the goal of real-time application. Instead, we employ a 

common approximation wherein a fixed set of 

hyperparameters is determined by maximizing the evidence 

𝑝(𝑑̅𝑚|𝜃̅), and plugging those estimates into the Gaussian 

process prior: 

𝑝(𝐸̅𝑛|𝜃̅) =
1

(2𝜋)
𝑛
2|𝛴̿𝐸|

1
2

 𝑒𝑥𝑝 [−
1

2
(𝐸̅𝑛 − 𝜇̅𝐸)𝑇 𝛴̿𝐸

 −1 (𝐸̅𝑛 − 𝜇̅𝐸)].   (6) 

Here, 𝜇̅𝐸 is the prior mean, which will be fixed at 0, or it 

may be chosen on the basis of earlier experiments or expert 

knowledge. Under the reasonable assumption of a normal 

distribution of the measurement uncertainty on the 

emissivity line integrals, described by the variable 𝜖 ̅in Eq. 

(2), the likelihood can be written as: 

 

𝑝(𝑑̅𝑚|𝐸̅𝑛,  𝜃̅) = 
1

(2𝜋)
𝑚
2 |𝛴̿𝑑|

1
2

 𝑒𝑥𝑝 [−
1

2
(𝑅̿ ∙ 𝐸̅𝑛 − 𝑑̅𝑚)

𝑇
 𝛴̿𝑑

 −1 (𝑅̿ ∙ 𝐸̅𝑛 − 𝑑̅𝑚)].    (7) 

Here, 𝛴𝑑  is the covariance of the emissivity, describing 

measurement uncertainty and correlation on the vector 𝑑̅𝑚 

of measured line-integrals. We will assume that the various 

line-integrated measurements are uncorrelated and choose a 

5% noise level, based on previous experience at Tore Supra. 

Therefore, 

𝛴̿𝑑 = (
(0.05 ∙ 𝑑1)2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ (0.05 ∙ 𝑑𝑚)2

).          (8) 

Finally, the posterior distribution, conditioned on the 

optimized hyperparameters, reads up to a constant factor, 

 

𝑝(𝐸̅𝑛|𝑑̅𝑚, 𝜃̅) ~ 𝑝(𝑑̅𝑚|𝐸̅𝑛, 𝜃̅)  ∙ 𝑝(𝐸̅𝑛|𝜃̅)  

~ 𝑒𝑥𝑝 [−
1

2
(𝑅̿ ∙ 𝐸̅𝑛 − 𝑑̅𝑚)

𝑇
 𝛴̿𝑑

 −1 (𝑅̿ ∙ 𝐸̅𝑛 − 𝑑̅𝑚)] ∙  

𝑒𝑥𝑝 [−
1

2
(𝐸̅𝑛 − 𝜇̅𝐸)𝑇 𝛴̿𝐸

 −1 (𝐸̅𝑛 − 𝜇̅𝐸)].      (9) 

The major advantage of normal distributions and a linear 

forward model now becomes clear. Indeed, it follows from 

standard probability calculus that the product of two normal 

distributions is also Gaussian, with mean vector and 

covariance matrix given by: 

𝜇̅𝐸
  𝑝𝑜𝑠𝑡

= 𝜇̅𝐸
  + (𝑅̿𝑇𝛴̿𝑑𝑅̿ + 𝛴̿𝐸

−1
)

−1

𝑅̿𝑇  𝛴̿𝑑

−1
(𝑑̅𝑚 − 𝑅̿ ∙ 𝜇̅𝐸),  (10) 

𝛴̿𝐸
𝑝𝑜𝑠𝑡

= (𝑅̿𝑇𝛴̿𝑑𝑅̿ + 𝛴̿𝐸

−1
)

−1

.      (11) 

The posterior mean is thus available in a closed form and 

can be used as an estimate of the emissivity field, which can 

be calculated in real time. In addition, the diagonal elements 

of the posterior covariance matrix 𝛴𝐸
𝑝𝑜𝑠𝑡

 quantify the 

uncertainty on the inference result. 

III. Phantom test and comparison with MFI 

To assess the performance of the GPT and compare with 

existing methods, we first use synthetic data (phantom test). 

We perform a benchmark with the standard minimum 

Fisher information method (MFI) which has been 

thoroughly tested with several fusion diagnostics, e.g. the 

SXR systems at JET, Tore Supra and TCV. Four different 

shapes were used for the phantom tests, corresponding to 



   

various situations that are expected to be relevant for WEST 

SXR emission: Gaussian shape, hollow shape, left-right 

kidney shape and up-down kidney shape. The white dashed 

contours in Fig. 4 represent equilibrium magnetic flux 

surface positions provided by the EQUINOX10 equilibrium 

code. 

 

Fig. 4. Four phantom emissivity fields are used in our test: (a) Gaussian shape, (b) 

hollow shape, (c) left-right kidney shape, (d) up-down kidney shape. The green curve 

in the figure represents the vacuum vessel and the red curve is the last-closed flux 

surface. The white dashed curves provide the flux surface geometry. Note that the 

phantom emissivity has been normalized for the benefit of numerical computation. 

The reconstructed emissivity fields based on line integrals 

with 5% statistical uncertainty are shown in Fig. 5. The 

quality of the reconstructions can be quantified through a 

relative error map, showing the difference between the 

phantom and reconstructed field, normalized by the 

maximum phantom emissivity:  

 

𝜉𝑖 =
|𝐸𝑛,𝑖

(𝑟𝑒𝑐)
−𝐸𝑛,𝑖|

𝑚𝑎𝑥{𝐸̅𝑛}
.   (12) 

 

In addition, in order to quantitatively compare the quality of 

the reconstructions, the root-mean-square deviation 

(RMSD) was calculated for each result, given by 

 

 𝑅𝑀𝑆𝐷 = √
∑ (𝐸𝑡,𝑖

(𝑟𝑒𝑐)
−𝐸𝑡,𝑖)2𝑛

𝑡=1

𝑛
.     (13)  

 

In case of the Gaussian shape, the maximum relative error 

is around 2%, 8% for the hollow shape, 7% for the left-right 

kidney shape and 8% for the up-down kidney shape. In 

general, more complex emissivity field structures are more 

difficult to reconstruct, the error level depending greatly on 

the coverage and field of view of the optical system. 

Nevertheless, in all cases the characteristic shape of the 

phantom is recovered relatively well by GPT. In addition, 

one can compare the line integrals obtained from the 

original phantom, with those calculated from the 

reconstructed emissivity field. As shown in Fig. 5, good 

agreement is achieved in all cases. On a typical PC 

environment with Matlab, each time slice takes about 100 

ms calculation time. 

 
Fig. 5. GPT phantom test with 5% noise level for Gaussian shape, hollow shape, left-

right kidney shape and up-down kidney shape phantoms. From left to right, the first 

column contains the reconstructions, the second column shows the relative error maps 

according to Eq. (12) (the white contours represent the original phantom), and the 

third column gives the comparison between the line integrals obtained from the 

phantom (red dots) and from the reconstructed emissivity fields (blue curves).  
 

 
Fig. 6. MFI phantom test with 5% noise level for Gaussian shape, hollow shape and 



   

left-right kidney shape phantoms. From left to right, the first column contains the 

reconstructions, the second column shows the relative error maps according to Eq. 

(12) (the white contours represent the original phantom), and the third column gives 

the comparison between the line integrals obtained from the phantom (red dots) and 

from the reconstructed emissivity fields (blue curves). 

 

The MFI tomography reconstruction results are shown in 

Fig. 6. It can be noticed that MFI performs very well in the 

Gaussian shape case, the maximum relative error being 

around 6%. However, for the more complex structures like 

the hollow shape and the left-right kidney shape, errors are 

much higher: 14% maximum relative error for the hollow 

shape and over 20% for the left-right kidney shape. Since in 

GPT, the smoothness along the magnetic flux surface is 

constrained softly with the characteristic length scale, but in 

MFI, the smoothness preference is given by a direction 

weight factor; this gives MFI a lower degree of freedom 

comparing to GPT. Furthermore, the computational load of 

MFI is considerably higher than for GPT, in our case 

amounting to several seconds, compared to 100 ms for GPT. 

 

 
Fig. 7. Examples of a comparison between the posterior variance map (color map) 

and relative error map (black contours) on a 5% noise level: (a) Gaussian shape, (b) 

hollow shape, (c) left-right kidney shape, (d) up-down kidney shape. 

 

Another valuable advantage of GPT is that it provides 

uncertainty estimates on the reconstructed emissivity field 

through the the posterior covariance matrix; Eq. (11). 

Indeed, whereas the relative error field is not available when 

performing tomography on real WEST data, the posterior 

variance can still be calculated. The good correspondence 

of the posterior variance with the relative error field is 

confirmed in Fig. 7. One could notice that in the lower 

uncertainty area, which has been marked in red circles, the 

error value also keeps in a lower level. The posterior 

variance plots can be used to optimize the viewing geometry 

of the diagnostic, which will be part of future work. 

 
IV. Conclusion and perspectives 
 

In this paper, a new non-parametric SXR tomography 

algorithm for WEST based on Gaussian processes has been 

supplemented with magnetic equilibrium information. 

Compared to the traditional tomography techniques, GPT 

has several advantages. First, GPT is not based on an 

optimization process, therefore it is a computationally light-

weight solution, rendering GPT a potential candidate for 

real-time tomography applications. Second, tests on four 

typical WEST phantom emissivity fields have pointed out 

that the quality of the GPT reconstructions compares 

favorably to results provided by the classic minimum Fisher 

technique. Third, GPT intrinsically provides uncertainty 

estimates on the reconstructed emissivity fields, obtained 

from the posterior Gaussian process. This can be exploited 

for online self-checking of the algorithm’s performance, 

and can contribute to hardware design optimization. Fourth, 

it is important to note that GPT also provides good SXR 

reconstructions without equilibrium information6. Finally, 

the Bayesian probabilistic framework naturally enables an 

integrated approach, combining the SXR tomography with 

other forward models in a joint probability model, such as 

the magnetic equilibrium reconstruction.  
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TABLE I. Error estimation and Root-mean-square deviation.  

Phantoms GPT MFI 

 

Gaussian 

 
 

Hollow 

 
 

Left-right kidney 

 
 

Up-down kidney 

 

 

2 % max error 

0.0034 RMSD (a.u.) 
 

8 % max error 

0.0140 RMSD (a.u.) 
 

7 % max error 

0.0128 RMSD (a.u.) 
 

8 % max error 

0.0128 RMSD (a.u.) 

 

6 % max error 

0.0108 RMSD (a.u.) 
 

14 % max error 

0.0185 RMSD (a.u.) 
 

Over 20 % max error 

0.0326 RMSD (a.u.) 
 

 

 

 

   

   

 


