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Abstract. We present a new texture discrimination method for tex-
tured color images in the wavelet domain. In each wavelet subband, the
correlation between the color bands is modeled by a multivariate gen-
eralized Gaussian distribution with fixed shape parameter (Gaussian,
Laplacian). On the corresponding Riemannian manifold, the shape of
texture clusters is characterized by means of principal geodesic analysis,
specifically by the principal geodesic along which the cluster exhibits its
largest variance. Then, the similarity of a texture to a class is defined in
terms of the Rao geodesic distance on the manifold from the texture’s
distribution to its projection on the principal geodesic of that class. This
similarity measure is used in a classification scheme, referred to as prin-
cipal geodesic classification (PGC). It is shown to perform significantly
better than several other classifiers.
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1 Introduction

Texture discrimination is an essential task in various image processing applica-
tions, such as image retrieval and image segmentation. Texture is often charac-
terized by means of the distribution of filter responses. In [1] the Rao geodesic
distance (GD) based on the Fisher-Rao metric tensor was proposed as a similar-
ity measure between multivariate generalized Gaussian distributions (MGGDs)
characterizing the wavelet detail features of color textures. Among other advan-
tages, it turns out that, for fixed shape parameter, an analytic expression exists
for the GD on the MGGD submanifold, in contrast to the Kullback-Leibler diver-
gence (KLD), barring the two-dimensional case [2]. Moreover, in [2] it was shown
that, compared to the KLD, the GD provides consistently superior performance
in its application to various texture classification and retrieval experiments.

Texture discrimination techniques frequently compute the distance between
the unlabeled (query) texture image and one or several of its nearest neighbors
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in the training set. However, they seldom take into account the underlying shape
or variability of the class. When the features consist of distribution parameters,
this may be done by characterizing the shape of the cluster on the correspond-
ing probabilistic manifold. Provided the clusters are compact, the class centroid
yields a convenient summary of the cluster, which may be sufficient to discrim-
inate between the various classes, as was done in [3]. On the other hand, for
non-compact clusters a more sophisticated measure of cluster shape is required.
For this reason in [4] texture classes were modeled by multiple centroids in an
eigenspace of distance matrices.

In this paper we take a different approach which hinges on the observa-
tion that clusters of MGGD dispersion matrices form elongated structures on
the manifold. The elongation is typically very pronounced along one or a few
directions at most. Therefore we choose to characterize the cluster shape intrin-
sically in terms of the cluster’s geodesic subspaces obtained by principal geodesic
analysis. We present a new scheme for texture discrimination on the zero-mean
MGGD manifold with fixed shape. It is based on the geodesic distance between
the unlabeled texture and its projection on the principal geodesic correspond-
ing to the largest eigenvalue for each class. Using data from a challenging color
texture database, we compare the performance of our proposed scheme, which
we refer to as principal geodesic classification, with the performance of the GD-
based k-nearest neighbour classifier and another strategy based on the GD to a
single cluster centroid (‘distance-to-centroid’). This paper builds on our earlier
work in [5], but here we present more mathematical details about the method
and the experiments have been extended significantly.

2 The manifold of multivariate generalized Gaussian
distributions

In our application the wavelet detail coefficients of color textures are modeled
by means of a zero-mean MGGD, considering the dependence between the color
bands. The wavelet subbands are assumed to be mutually independent. We first
introduce the MGGD model and then we discuss the geodesics, the exponential
map and the Fréchet mean on the MGGD manifold. We assume that, where
necessary, existence and uniqueness conditions are fulfilled.

2.1 The multivariate generalized Gaussian distribution

We adopt the definition of the zero-mean MGGD (or multivariate exponential
power distribution) provided in [1], with the following density function for the
vector x:
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Here, m is the dimensionality of the probability space, e.g. m = 3 for three-band
color images. Also, Γ (.) denotes the Gamma function and Σ is the dispersion



matrix. β is the shape parameter which controls the fall-off rate of the distri-
bution. The multivariate Gaussian case is retrieved for β = 1, while we refer to
the case β = 1/2 as the multivariate Laplace distribution. Owing to its heavier
tails, the Laplace distribution is expected to provide a better model for wavelet
statistics; a fact that was confirmed in earlier classification experiments [2]. In
the experiments below, the parameters of the probability models were estimated
via the method of moments, followed by an optimization through maximum
likelihood estimation [2].

2.2 Geodesic distance

The geodesics for the zero-mean MGGD were derived in [1]. We here only con-
sider the case with fixed shape parameter β, corresponding to a set of subman-
ifolds, each parameterized by the dispersion matrix Σ. The dimensionality of
each submanifold is given by N = m(m + 1)/2, resulting in N = 6 dimensions
for three-band color images. However, it turns out that the metric and geodesics
assume a particularly simple form in another parameterization, obtained as fol-
lows [1]. First, we consider the geodesic between two specific dispersion matrices
Σ1 and Σ2. Then, we calculate the regular matrix K that simultaneously di-
agonalizes Σ1 and Σ2, sending Σ1 to the unit matrix Im and Σ2 to a diagonal
matrix Φ2:

K ′Σ1K = Im, K ′Σ2K = Φ2.

The diagonal elements of Φ2 are the eigenvalues λi2 of Σ−11 Σ2 (i = 1, . . . ,m).
With a final coordinate transformation to ri2 ≡ lnλi2, the metric elements gij are
constants given by

gii = 3bh −
1
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In fact it can be proved that K diagonalizes all matrices Σ(t) on the geodesic
between Σ1 and Σ2, parameterized by t (0 ≤ t ≤ 1). As such, K reduces Σ(t) to
Φ(t), a diagonal matrix with elements the eigenvalues λi(t) of Σ−11 Σ(t), where
λi2 ≡ λi(1). The geodesic between Σ1 and Σ2 is then simply a straight line:

ri(t) = ln(λi2) t, (2)

where ri(t) ≡ ln[λi(t)]. As a result, the geodesic distance between the two dis-
tributions becomes [1]
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2.3 Exponential map

The exponential map, sending tangent vectors to points on the manifold, as well
as its inverse, will be needed for subsequent calculations. A tangent vector in the
starting point (t = 0) of a geodesic provides a ‘velocity vector’ for that geodesic.
In terms of the matrices Φ(t) the tangent vectors T are given by

T =
dΣ(t)

dt

∣∣∣∣
t=0

= (K ′)−1
dΦ(t)

dt

∣∣∣∣
t=0

K−1 = (K ′)−1 ln(Φ2)K−1, (4)

where the last equality follows from (2). Clearly the tangent vector T is also
diagonalized by the same matrix K, resulting in the matrix ln(Φ2). Consequently,
given a tangent vector and a point of application Σ1 on the manifold, to find
the exponential map of the tangent vector T we merely need to calculate the
matrix K that diagonalizes both Σ1 and T , sending Σ1 to the unit matrix. The
only remaining operation is the normalization, since we have to find the point
on the geodesic that lies at a geodesic distance ‖T‖ from Σ1. From (3) and (4) it
follows that rescaling the logarithmic eigenvalues lnλi2 by a factor k also rescales
the GD by the same factor. Therefore, after calculating the GD, resulting in
a ‘temporary’ value of, say GD0, corresponding to the logarithmic eigenvalues
lnλi2 obtained by diagonalization of Σ1 and T , we simply need to rescale lnλi2
by a factor ‖T‖/GD0. Then, the result of the exponential map Σ2 applied to T
is given by

Σ2 = (K ′)−1 ln(Φ2)
‖T‖
GD0

K−1.

Conversely, to find the result of the inverse exponential map, or logarithmic
map, taking a point Σ2 to the tangent vector T in Σ1, with ‖T‖ = GD(Σ1, Σ2),
we first calculate the following ‘temporary’ tangent vector:

T0 = (K ′)−1 ln(Φ2)K−1.

This still needs to be rescaled, resulting in the final image T under the logarith-
mic map:

T = T0
GD(Σ1, Σ2)

‖T0‖
.

2.4 Fréchet mean

The Fréchet or Kärcher mean provides a generalization to the manifold setting
of the centroid of a cluster of points in a Euclidean space. Given a set of n points
Σj on the fixed-shape zero-mean MGGD manifold, the centroid Σc is obtained
through the following minimization:

Σc = ArgMin
Σ

n∑
j=1

GD2(Σ,Σj). (5)

This poses an optimization problem on the manifold. Assuming that a solution
exists and that it is unique, we solve the problem iteratively by projecting the



points Σj on the tangent space at the current approximation to the centroid
(initialized by thatΣj which minimizes the criterion (5)). Then we calculate their
Euclidean mean on the tangent space and project the result back to the manifold,
as illustrated in Figure 1a. This is basically a gradient descent algorithm on the
manifold, which was derived in [6].

3 Principal geodesic classification

The proposed principal geodesic classifier on the MGGD manifold is based on
principal geodesic analysis (PGA). We briefly describe PGA in this section,
followed by an outline of the principal geodesic classification (PGC) algorithm.

3.1 Principal geodesic analysis

Since a geodesic is in a sense a generalization of a straight line in a Euclidean
space, PGA for a cluster of points on a manifold was proposed as a natural
generalization of principal component analysis (PCA) [7]. PGA yields a set of
nested submanifolds, on which the projected elongation or variance of the cluster
is maximal. Approximating the projection on the subspaces by the inner product
in the tangent space at the centroid, PGA can be carried out through PCA in
the tangent space (exact PGA would computationally be too demanding). The
resulting tangent vectors, which are the eigenvectors of the covariance matrix in
the tangent space, uniquely define a set of geodesic subspaces of the manifold.

It is important to note that PGA yields an (approximately) intrinsic char-
acterization of the cluster, which is certainly to be preferred over tangent space
approximations in the case of elongated structures. For instance, in our experi-
ments we noted that a classifier based on the Mahalonobis distance in the tangent
space at each cluster centroid, did not yield satisfactory results. Although the
issue was not studied in detail, it is possible that the reason lies in the distortion
that occurs through the projection on the tangent space. Indeed, on geometrical
grounds it is clear that, as a result of the distortion, the error on the Mahalanobis
distance is generally larger for more elongated clusters.

3.2 PGC training and testing

The PGC training phase consists of providing the model for each class by means
of PGA. In the experiments below, we retain only the first principal geodesic,
characterizing the direction along which the cluster has its largest elongation or
variance.

In the testing phase, each texture in the database is considered one after
the other. Such a test (or query) texture is then projected on the first principal
geodesic of each class. This in itself is an optimization problem, as it involves
finding the point on the geodesic that has the shortest GD to the test point. As
with PGA, the projected point could be approximated by performing the pro-
jection in the tangent space and taking the image under the exponential map.



However, it will be shown that this noticeably reduces the overall performance
of the classifier. Therefore it is better to carry out the exact projection through
optimization in terms of the parameter t along the principal geodesic. Subse-
quently, the GD is calculated between the test point and its projection on the
principal geodesic. This principal geodesic distance is defined as our similarity
measure between the test point and a class. This is illustrated in Figure 1b.

As the wavelet subbands are considered to be mutually independent, this
procedure can be carried out in each individual subband. The total squared GD
between the test point and the class is then taken as the sum of squared GDs in
each individual subband. Finally, the test point is assigned to the class to which
its total principal geodesic distance is the smallest.

(a) (b)

Fig. 1: (a) Principle of the iterative algorithm to calculate the centroid of a
cluster on the MGGD manifold. (b) Illustration of classification of a test texture
by PGC. For each class, the distance is calculated of the test texture to its
projection on the first principal geodesic of that class.

4 Classification experiments

4.1 Experimental setup

An experiment was set up using data from the Columbia-Utrecht Reflectance
and Texture Database (CUReT). It is characterized by a relatively large within-
class variability, leading to a highly challenging classification task. A subset of
cropped 200×200 RGB images was chosen, belonging to 61 classes. Each class is
made up of a single texture, imaged under varying illumination conditions and
viewpoints [8]. As such, each class consists of 92 images, resulting in a database
of 5612 images to be classified.

The class features were calculated as follows. Every color component of each
image was individually normalized to zero mean and unit standard deviation.
Then, a discrete wavelet transform with three levels and three orientations
(nine subbands) was applied individually on every color component using the



Daubechies filters of length eight. The wavelet detail coefficients of every sub-
band were then modeled jointly over the three color components by an MGGD
with β = 1 (Gaussian) or β = 1/2 (Laplacian). The resulting dispersion matrices
constitute the feature set for a single image. Next, in all wavelet subbands the
first principal geodesic was computed for each class of 92 images.

Finally, the classification was carried out based on the principal geodesic
distance to each class. The classification performance was measured by the suc-
cess rate using the leave-one-out strategy. We performed a comparison with a
‘distance-to-centroid’ (DtC) classifier that simply calculates the GD of the test
texture to the centroid of each cluster. Another comparison was made with a
k-nearest neighbor (kNN) classifier. Here, k = 91 was chosen since ideally the
other 91 subimages should be the nearest neighbors of a test texture.

4.2 Experimental results

The results of the classification experiments are presented in Table 1. The highest
classification accuracy is achieved with our proposed principal geodesic classifier,
compared to the DtC classifier and kNN. This indicates that accommodating the
intrinsic variability of the texture classes on the MGGD manifold potentially
leads to a performance improvement.

In addition, the Laplace distribution, for which the GD takes on a closed
form, is indeed seen to perform better than the Gaussian distribution in most
tests, and for PGC in particular.

It is also worth noting that the performance of the DtC classifier is inferior
to that of kNN. Furthermore, it is the only case where the Laplace distribution
performs worse than the Gaussian. This could indicate that, for this particular
database, the characterization of the classes by means of a single centroid entails
an excessive loss of information. We should also mention here that in earlier
results on another database, the DtC scheme did yield considerably better results
than the kNN classifier [3]. This remains a matter for further investigation.

Finally, PGC also offers a significant computational advantage over kNN.
Indeed, although the training phase of PGC is more demanding, during classifi-
cation kNN requires a distance calculation to each image in the database, while
PGC merely needs the principal geodesic distance to each class. The compu-
tational advantage becomes even more pronounced when the approximation is
employed whereby the projection onto the principal geodesic is performed in the
tangent space.

5 Conclusion

We have presented a new classification scheme for color textures on a probabilis-
tic manifold, exploiting the redundancy of the information in the parameters of
the distribution to characterize the variability of texture classes. The multivari-
ate generalized Gaussian distribution remains an interesting model for multiband
wavelet features, particularly in view of the existence of an analytic expression for



Table 1: Classification success rates (SR), based on Gaussian (G) and Laplace
(L) models of 5612 CUReT color textures for three wavelet scales, using PGC
(exact projection and approximation in the tangent space). This is compared to
a distance-to-centroid (DtC) and a k-nearest neighbor (kNN) classifier.

Classifier PGC exact PGC approx. DtC kNN

Model G L G L G L G L

SR 80.6 82.5 76.6 77.6 72.3 69.8 73.5 75.7

the Rao geodesic distance in the case of a fixed shape parameter. Our proposed
principal geodesic classifier exhibits superior performance in a classification task
on the CUReT texture database, in comparison with a distance-to-centroid and
a k-nearest neighbor classifier.

Various avenues for future research have been identified, starting with ex-
istence and uniqueness conditions for the cluster centroids, projection onto the
principal geodesic, etc. The weaker performance of the distance-to-centroid clas-
sifier in the present experiments is another issue to be investigated. Finally,
projection on multiple geodesic subspaces along interesting directions would be
a logical next development of the principal geodesic classifier.
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