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Abstract In various interesting physical systems, important properties or dynamics
display a strongly fluctuating behavior that can best be described using probability
distributions. Examples are fluid turbulence, plasma instabilities, textured images,
porous media and cosmological structure. In order to quantitatively compare such
phenomena, a similarity measure between distributions is needed, such as the Rao
geodesic distance on the corresponding probabilistic manifold. This can form the ba-
sis for validation of theoretical models against experimental data and classification
of regimes, but also for regression between fluctuating properties. This is the pri-
mary motivation for geodesic least squares (GLS) as a robust regression technique,
with general applicability. In this contribution, we further clarify this motivation and
we apply GLS to Tully-Fisher scaling of baryonic mass vs. rotation velocity in disk
galaxies. We show that GLS is well suited to estimate the coefficients and tightness
of the scaling. This is relevant for constraining galaxy formation models and for
testing alternatives to the Lambda cold dark matter cosmological model.

1 Introduction

In many parametric regression problems, robustness of the estimates is an essential
criterion, sometimes even more important than goodness-of-fit. Here, by ‘robust-
ness’ we mean not only resilience against outliers, but also relative insensitivity
to model uncertainty. A multitude of techniques, Bayesian and non-Bayesian, have
been developed ensuring robustness in the presence of various departures from the
regression model. However, it can be difficult for the non-expert user to make the
right choices of methods and implementation details. This constitutes a major ob-
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stacle for adoption of the right techniques by practitioners in various application
domains with little tradition in the data sciences.

In this paper, we advocate the use of a simple but powerful robust regression
method, called geodesic least squares (GLS), that was previously introduced in [1]
and [2]. The purpose of the present contribution is, first, to generalize to a cer-
tain extent the theoretical underpinnings of the method, and second, to compare the
performance of the method in a practical application from astronomy with other
methods, including a standard robust Bayesian approach.

The motivation for GLS can be explained using a simple example that essentially
describes a very common situation. Imagine the turbulent flow of a fluid through a
pipe with a variable cross-section. The regression task consists of finding a relation
between the flow speed of the fluid (response variable) and the cross-section of the
pipe (predictor variable), based on the reading from flow meters positioned at dif-
ferent locations along the axis of the pipe. Of course, the flow speed measured by
any of these meters fluctuates in time. Thus, even when the predictor variable is
held fixed, the response variable is not constant. So far this is a common regression
problem, which the vast majority of practitioners from applied fields would solve
by calculating time averages and performing least squares regression between these
average flow speeds and the measured cross-section of the pipe.1 A standard max-
imum likelihood or Bayesian solution would be possible too, basing the likelihood
on the distribution of velocity fluctuations (neglecting measurement uncertainty),
which we assume to be known from a previous experiment. However, in addition
to the turbulent fluctuations there can be other sources of uncertainty. In the present
example this could for instance be due to a variable pumping speed due to a mal-
functioning pump. If the flow readings are taken sequentially, this could introduce
additional uncertainty not captured by the distributional properties of the intrinsic
turbulent fluctuations. This is a case of incorrectly specified uncertainties, which can
be handled using various Bayesian approaches depending on the specific problem
(see e.g. [3]). The solution provided by GLS is to consider, on the one hand, the dis-
tribution (likelihood) of the flow velocity that would be expected if all assumptions
regarding the deterministic and probabilistic components of the regression model
were correct. We call this the modeled distribution. On the other hand, the distribu-
tion of the data is characterized in a generic way using as few assumptions as possi-
ble, referred to here as the observed distribution. Then, similar to minimization by
the least squares method of the sum of squared Euclidean distances between a mea-
surement of the dependent variable and its modeled value, GLS estimates the model
parameters by minimizing the sum of squared Rao geodesic distances between the
observed and modeled distribution. This introduces extra flexibility (‘elasticity’) in
the analysis, which, in practice, yields excellent robustness properties. Effectively,
GLS performs regression between probability distributions on a Riemannian prob-
abilistic manifold. It can also be characterized as a minimum distance method, gen-
eralizing likelihood-based techniques, although there are important differences with
standard minimum distance estimation (MDE). Another typical example of the ap-

1 In fact, any measurement with finite precision is an average over some smaller scale, e.g. the
measurement of the cross-section of the pipe.
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plication of GLS was treated in [4], relating the properties of a repetitive instability
in tokamak plasmas. The distributions of two properties of the instability were de-
termined under stationary plasma conditions and then the regression was carried
out between those distributions. Indeed, GLS can take into account uncertainty on
all variables (predictor and response). There are many other examples where the
GLS approach is natural, e.g. involving signals, images, porous media, cosmologi-
cal structure, etc., although the method itself is of general applicability.

After explaining the motivation for GLS based on regression between fluctuat-
ing system properties, in this contribution we illustrate the applicability of GLS to
common regression problems by estimating a key scaling law in astrophysics: the
baryonic Tully-Fisher relation. This is a remarkably tight relation between the total
baryonic mass of disk galaxies and their rotational velocity, of great practical and
theoretical significance in astrophysics and cosmology.

2 GLS regression: principles and motivation

In parameter estimation problems like regression analysis, the likelihood compares
measured quantities with their value predicted by the model, under stationary exper-
imental conditions, determined by fixed or stationary predictor variables. Hence, the
likelihood serves as a distance measure between the measurement and the model.
Maximization of the joint likelihood for all measurements is equivalent to minimiza-
tion of the Kullback-Leibler divergence (KLD) between the empirical (‘observed’)
distribution and the theoretical (‘modeled’) distribution of the residuals. In general,
MDE techniques can be made more robust against model uncertainty by relying on
similarity measures other than the KLD. The Hellinger divergence (closely related
to the Bhattacharyya distance) is a common choice [5], first applied to regression
in [6].

We follow a somewhat different approach, minimizing the Rao geodesic dis-
tance (GD) between the observed and modeled distributions. Consider a parametric
multiple regression model involving m predictor variables ξ j ( j = 1, . . . ,m) and a
single response variable η , all assumed to be infinitely precise. Suppose that N
measurements are acquired for the predictor variables, resulting in measurements
ξI j (I = 1, . . . ,N). The regression model can be written as follows:

ηI = f (ξI1, . . . ,ξIm,β1, . . . ,βp)≡ f ({ξI j},{βk}), ∀I = 1, . . . ,N. (1)

Here, f is the regression model function, in general nonlinear and characterized by
p parameters βk (k = 1, . . . , p). In regression analysis within the astronomy com-
munity, it is customary to add a noise variable to the idealized relation (1). This
so-called intrinsic scatter serves to model the intrinsic uncertainty on the theoreti-
cal relation, i.e. uncertainty not related to the measurement process. We take another
route for capturing model uncertainty, however.
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In any realistic situation, we have no access to the quantities ηI and ξI j. In-
stead, we assume that at each ‘measurement site’ I a series of nI measurements xiI j,
resp. yiI is collected for the noisy predictor variables x j and the response variable y
(iI = 1, . . . ,nI). In this paper, we assume that the measurement model describes fluc-
tuation of the data around a point that lies exactly on the regression function. This
need not be the case in reality, which is one of the potential causes of model uncer-
tainty. Nevertheless, if there are multiple measurements at each measurement site,
then this can provide useful information on the true distribution of the data under
stationary conditions. A common situation is where, at fixed I, the xiI j and yiI rep-
resent measurements of noisy stationary signals. In the remainder of the paper we
will assume independent Gaussian noise, but this can be generalized to multivariate
or non-Gaussian distributions. In the independent Gaussian case, we have

yiI = ηI + εy,iI , εy,iI ∼N (0,σ2
y,I),

xiI j = ξI j + εx,iI j, εx,iI j ∼N (0,σ2
x,I j).

(2)

Notice that in general the standard deviations can be different at each measurement
site. For instance, in many real-world situations, such as the one discussed in this
paper, there is a constant relative error on the measurements, so the standard devi-
ation can be modeled as being proportional to the measurement itself. Of course,
the noise described by the σy,I and σx,I j need not be the only source of uncertainty
contributing to fluctuation of the data around the regression model. This is the case
of interest in this paper, where other uncertainty sources such as model uncertainty
are present (cf. the intrinsic scatter mentioned before), which could even be more
important than the noise at the individual measurement sites and about which little
is known. For now we assume that the standard deviations σy,I and σx,I j were es-
timated prior to the regression analysis. This may be as simple as calculating the
standard deviation of the yiI and xiI j at each measurement site. We also include the
possibility where nI = 1 for some or all I, in which case the noise variables σy,I
and σx,I j could be given by the error bars obtained from previous experiments or an
uncertainty analysis.

In reality, the true model points (ηI ,ξI1, . . . ,ξIm) from which the data are as-
sumed to be generated are unknown, but we can estimate them by calculating av-
erages ȳI ≡ 1/nI ∑

nI
iI yiI and x̄I j ≡ 1/nI ∑

nI
iI xiI j, which are expected to be distributed

according to N (0,σ2
y,I/nI) and N (0,σ2

x,I j/nI), respectively. Now suppose that the
model given by (1) and (2) were exact, meaning that σx,I j and σy,I would character-
ize the only uncertainty sources, then the joint likelihood of the average data would
be given by
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Here, Cξ stands for the collection {βk}, {ξI j}, {σx,I j}, {σy,I}, the notation {x̄I j}
referring to the set of x̄I j for all I and j, and similar for other sets. Also, we use
the same indices for summation and for indicating set members, in order not to
complicate the notation. As the ξI j are not known, they have to be marginalized over.
This is usually accomplished by decomposing the line from the measurement to the
unknown point on the model in a perpendicular and parallel component w.r.t. the
model, and assuming a uniform prior on the coordinates along the model surface [3,
7]. For a linear model, effectively this comes down to inserting the measurement
values into the model equation, and propagating the uncertainty on the predictor
variables through the model. Treatment of a nonlinear model is more complicated,
but can be simplified by a linear approximation of the model in the vicinity of the
model point nearest to the data point. Alternatively, one can perform Gaussian error
propagation to obtain an approximate normal conditional likelihood for {ȳI}:

pmod
(
{ȳI}

∣∣Cx
)
=

N

∏
I=1

1√
2πσmod,I

exp

−1
2

[
ȳI− f

(
{x̄I j},{βk}

)]2

σ2
mod,I

 . (4)

In this expression, Cx stands for the collection {βk}, {x̄I j}, {σx,I j}, {σy,I}. The un-
certainty on the predictor variables propagates through the function f and adds to
the conditional uncertainty on the response variable, determined by σmod,I . For ex-
ample, referring to f

(
{x̄I j},{βk}

)
as the modeled mean µmod,I , for a linear model

we have (with relabeled βk):

µmod,I ≡ β0 +β1xI1 + . . .+βmxIm,

σ
2
mod,I ≡ σ

2
y,I +β

2
1 σ

2
x,I1 + . . .+β

2
mσ

2
x,Im.

In the literature, uninformative priors for the model parameters βk have been derived
as well, based on transformation invariance [8]. We use these priors for comparison
of GLS with the standard Bayesian analysis.

Now, suppose for a moment that one would proceed with the maximum likeli-
hood method to estimate the parameters βk. From (4), one sees that this is equiv-
alent to minimization of the sum of squared Mahalanobis distances between each
observed ȳI and its corresponding value f

(
{x̄I j},{βk}

)
determined by the model
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function f .2 The Mahalanobis distance can be regarded as the distance between two
univariate Gaussian clusters of points with centroids given by ȳI and f

(
{x̄I j},{βk}

)
,

each with the same standard deviation, in the present case σmod,I . Interestingly, it
is also a special case of the Rao GD, namely the GD between the corresponding
normal distributions with those means and common standard deviation [9]. It is
therefore natural to generalize this to the case where not only the means of the dis-
tributions, but also the standard deviations are allowed to differ. One could choose to
generalize the Mahalanobis distance to the Bhattacharyya distance or the Hellinger
divergence, but we prefer the Rao geodesic distance owing to its solid mathematical
foundations and intuitive geometric interpretation.

By allowing the standard deviation of the observed and modeled distribution to
be different, the method is rendered robust, as the actual distribution of the data is
allowed to deviate from the modeled distribution. So, on the one hand, we consider
at each measurement site I the modeled distribution N

(
f
(
{x̄I j},{βk}

)
,σ2

mod,I

)
.

On the other hand, we have the observed distribution pobs, which has to rely on
as few assumptions as possible regarding the regression model, in an attempt to
‘let the data speak for themselves’. We here only assume that it also is a Gaussian
distribution, pobs =N (ȳI ,σ

2
obs,I), centered on the actually observed average ȳI , and

with an unknown standard deviation σobs,I , to be estimated from the data. Although
this can all be generalized, the normal distribution offers a computational advantage,
as the corresponding expression for the GD has a closed form [10]. In addition, we
already mentioned that, in principle, σobs,I can be different at each measurement site,
but in practice it is clear that we will need to introduce some sort of regularization to
render the model identifiable. In this paper we either assume σobs,I a constant sobs,
or proportional to the response variable, σobs,I = robs|ȳI |. The parameters sobs or
robs have to be estimated from the data. More complicated (parametrized) relations
between σobs,I and the response variable or other data would be possible too, but
one should be careful not to put too many restrictions on pobs, thereby defeating its
purpose.

GLS now proceeds by minimizing the total GD between, on the one hand, the
joint observed distribution of the N values ȳI and, on the other hand, the joint mod-
eled distribution. Owing to the independence assumption in this example, we can
write this in terms of products of the corresponding marginal distributions (includ-
ing all dependencies and with γobs either sobs or robs):

{
βk,γobs

}
= argmin

βk,γobs∈R

N

∑
I=1

GD2
[

pobs (Y |ȳI ,γobs) , pmod (Y |Cx)
]
. (5)

Here, the variable Y models the site averages. In addition, note that the parameters βk
occur both in the mean and the variance of the modeled distribution. Furthermore, in
(5) we have used the property that the squared GD between products of distributions

2 Under the assumption of symmetry of the likelihood distribution and homoscedasticity, this re-
duces to minimization of the sum of squared differences (Euclidean distances) between each mea-
sured ȳI and predicted f

(
{x̄I j},{βk}

)
.
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can be written as the sum of squared GDs between the corresponding factors [10].
Hence, the optimization procedure involves, at each measurement site, matching
not only ȳI with f

(
{x̄I j},{βk}

)
, but also σobs,I with σmod,I , in a way dictated by

the geometry of the likelihood distribution. As will be shown in the experiments,
the result is that GLS is relatively insensitive to uncertainties in both the stochastic
and deterministic components of the regression model. The same quality renders
the method also robust against outliers. In the experiments below, we employed a
classic active-set algorithm to carry out the optimization. Furthermore, presently
the GLS method does not directly offer confidence (or credible) intervals on the
estimated quantities. Future work will address this issue in more detail, but for now
error estimates were derived by a bootstrap procedure.

From the conceptual point of view, GLS performs regression between points (dis-
tributions) on a Riemannian probabilistic manifold, describing the data correspond-
ing to the response variable at each measurement site as a whole through either the
observed or the modeled distribution. It is important to stress that this is quite dif-
ferent from treating the data at each measurement site in a pointwise way, i.e. using
each individual yiI . Our method respects the intrinsic nature of the fluctuating quan-
tity described by the variable y. For instance, if, for fixed I, yiI is a series of samples
from a stationary signal, then comparing the measured signal distribution with the
predicted distribution can be seen as more natural than comparing each individual
sample with its predicted value. Furthermore, in MDE regression usually the data
distribution is characterized using a kernel density estimate. Although this offers
great flexibility, the disadvantage is that this estimate could be based on data from
different measurement sites. In addition, our parametric approach can be an advan-
tage if few measurements are available. Finally, the geometrical view on regression
analysis can be illustrated by visualizing the probabilistic manifold [2].

3 Application of GLS to Tully-Fisher scaling

3.1 The baryonic Tully-Fisher relation

The baryonic Tully-Fisher relation (BTFR) between the total (stellar + gaseous)
baryonic mass Mb of disk galaxies and their rotational velocity Vf is of fundamental
importance in astrophysics and cosmology [11, 12]. It is a remarkably simple and
tight empirical relation of the form

Mb = β0V β1
f . (6)

Here, Mb is expressed in solar masses M� and Vf in kms−1. The BTFR not only
serves as one of the tools for determining cosmic distances, but also provides con-
straints on galaxy formation and evolution models. In addition, it serves as a test for
the Lambda cold dark matter paradigm (ΛCDM), particularly in evaluating alterna-
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tives such as modified Newtonian dynamics (MOND). Indeed, whereas in ΛCDM
the BTFR is a consequence of various complex processes and thus should demon-
strate significant intrinsic scatter, MOND predicts a relation with zero intrinsic scat-
ter and a well-defined exponent β1 with a value of exactly 4.

In this scaling problem, we use data from 47 gas-rich galaxies, as detailed in [12].
The advantage of the gas-rich galaxies is that their masses can be more accurately
measured than those of star-dominated galaxies, which are traditionally used to de-
fine the Tully-Fisher relation. The rotation velocity Vf is measured in the flat part
of the galaxy rotation curve, determined from spectral Doppler shifts. The measure-
ments are plotted in Figure 1(a) on the logarithmic scale and in Figure 1(b) on the
original scale.

In this application clearly nI = 1 for all I, so little information can be obtained
regarding the distribution of the data from the single measurement at each site. How-
ever, the data in [12] also contain estimates of the observational errors, which we
treat here as a single standard deviation. This suggests a measurement error on the
response variable proportional to Mb, about 38%, i.e. a constant error bar on the
logarithmic scale.

3.2 Regression analysis

Owing to the power law character of most scaling laws, they are often estimated
by linear regression on a logarithmic scale. However, it is known that this may lead
to unreliable estimates, as the logarithm (heavily) distorts the distribution of the
data [2, 13]. This is in particular the case if the estimation is carried out using simple
OLS or when there are outliers in the data. In contrast, we will show that GLS
regression produces consistent results on both the logarithmic and original scales,
demonstrating its robustness.

In view of the proportional error on Mb, the observed standard deviation in GLS
is modeled here as a constant σobs,I ≡ sobs on the logarithmic scale and as σobs,I =
robsMb on the original scale. Estimation of these parameters is of interest to get an
idea of the intrinsic scatter on the BTFR.

We compare the results of GLS regression with OLS and a Bayesian approach.
In the latter, uncertainty on the predictor variables was taken into account into the
likelihood. In the case of nonlinear power law regression, the likelihood was ap-
proximated by a Gaussian, as the full treatment with marginalization over the model
points is too computationally intensive to incorporate in an MCMC simulation [3].
Uncertainty in the specified error bars was modeled through a scale factor with a
Jeffreys prior [3]. We also tested the GLS algorithm using the KLD as a similarity
measure between the observed and modeled distribution, instead of the Rao GD. We
will refer to this algorithm as ‘Kullback-Leibler least squares’, or KLS.

In order to get a feeling of the uncertainty of the estimates obtained from the
optimization routines, 100 bootstrap samples were created from the data, yielding
average parameter estimates and their standard deviations on the basis of the results
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(a) (b)

Fig. 1 The BTFR data and estimated regression functions by OLS, a robust Bayesian method, KLS
and GLS. (a) Logarithmic scale. (b) Original scale.

from OLS, KLS and GLS. Similar estimates were obtained from the MCMC chain
in the robust Bayesian approach.

The parameter estimates estimated by the various methods, as well as their stan-
dard deviations, are given in Table 1. Figure 1 shows the corresponding regression
curves. It is interesting to compare the results obtained by regression on the logarith-
mic scale, with those derived using nonlinear regression analysis. On the logarithmic
scale the data follow a rather clear linear pattern, hence the estimates by the various
methods are similar. However, in the nonlinear case the best fit is somewhat less
clear at first sight. Although the Bayesian, KLS and GLS methods agree relatively
well, the OLS parameter estimates are very different from the linear case. Most no-
ticeably, the nonlinear OLS estimate for the exponent β1 is heavily influenced by
the point with the largest value of Vf and Mb ≈ 3× 1010 M�. The other methods
are much less attracted by this point because of the large corresponding error bar
on Mb. Thus, part of the danger of the logarithmic transformation is due to its influ-
ence on the error bars in the presence of model uncertainty. The differences between
the parameter estimates by the other methods are much less pronounced, although
the consistency appears to be best in the case of GLS. This is in agreement with
the good robustness quality of GLS compared to other methods seen in previous
analyses [2, 4].

It is also worth pointing out that the scale factor robs (observed relative error) was
estimated by GLS to amount to roughly 63%. This is considerably larger than the
value of 38% predicted by the model (and dominated by σMb ), possibly indicating
that the scatter on the scaling law is not due to measurement error alone.

4 Conclusion

We have introduced and motivated geodesic least squares, a versatile and robust
regression method based on regression between probability distributions describ-
ing fluctuating or otherwise uncertain system properties. Part of the strength of the
method is its simplicity, allowing straightforward application by users in various
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Table 1 Average regression estimates and their standard deviations for the BTFR obtained with
OLS, KLS and GLS from 100 bootstrap samples. Similar results were derived by MCMC sampling
with the robust Bayesian method. The units of the parameters have been left out for simplicity. (a)
Logarithmic scale. (b) Original scale.

Method β0 β1

OLS 360±220 3.57±0.15
Bayes 220±220 3.72±0.19
KLS 80±80 3.98±0.23
GLS 140±82 3.80±0.16

Method β0 β1

OLS (1.0±2.3)×103 4.94±1.40
Bayes 88±140 3.81±0.20
KLS 120±100 3.91±0.19
GLS 130±130 3.79±0.21

(a) (b)

application fields, without the need for parameter tuning. We have applied GLS to
baryonic Tully-Fisher scaling, thereby demonstrating the robustness of the method
and providing an alternative means for testing cosmological models based on the
estimated intrinsic scatter.
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