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Abstract

The possibility of inferring the properties of electron density fluc-

tuations in tokamak plasmas from a reflectometer signal by means

of Bayesian methods is investigated. Within the physical optics ap-

proximation the interaction of the probing beam with the plasma is

described as reflection from a surface with stochastic properties that

is simulated numerically. A Bayesian technique is outlined to solve

the inverse problem to determine the surface characteristics from the

power spectrum of the reflectometer signal. It is shown that satis-

factory estimates of the length and time scales and the amplitude of
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density fluctuations can be obtained, in conditions relevant to core

tokamak plasmas.
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I INTRODUCTION

Anomalous transport of energy and particles in fusion plasmas is related to

the complex interaction of fluctuating fields such as temperature, potential

and density. Turbulent plasma phenomena are still poorly understood, which

is partly due to the difficulty of measuring fluctuating quantities in hot mag-

netized plasmas. Only a few diagnostics are suitable for turbulence studies

and among them is reflectometry, a radar-like technique that is widely used

to diagnose electron density fluctuations. Offering good spatial and temporal

resolution, reflectometry is an affordable diagnostic requiring limited space

without in-vessel components. Nevertheless, the interpretation of the fluc-

tuating reflectometer signal remains a challenging task. Due to the absence

of a simple relation between the measured signal and the electron density

fluctuations, their properties are often considered the same. In general, this

assumption is not justified and might therefore lead to unreliable conclusions.

Several works have addressed estimation of electron density fluctuations

from reflectometry measurements. A transfer function that relates the radial

wave number spectrum of the density fluctuations to that of the reflectome-

ter phase signal was obtained through numerical means in 1D.1,2 In addition,

an analytical model was developed within the Born approximation to recon-

struct the wave number spectrum related to density fluctuations from the

reflectometer cross-correlation function.3,4 The possibility of estimating the

true turbulence correlation length from the reflected signal has long been
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debated upon within the reflectometry community. Depending on plasma

conditions, the estimated correlation length can deviate from the true value.5

Recently, a full-wave code was used to determine the optimal probing angle

for the measurement of the turbulence correlation length with a Doppler

reflectometry system.5,6

In this paper, we extend previous studies and follow an alternative ap-

proach in an attempt to infer the turbulence properties from a reflectometer

signal. Our approach is rooted in inverse problem theory and makes use of

Bayesian probability theory. In general, an inverse problem can be solved by

assessing to which extent a given state of a physical system is consistent with

the measured data. Without suitable restrictions on the possible solutions,

it is relatively common that many distinct states are equally likely under the

observed data. Therefore, various regularization schemes have been proposed

in inverse problem theory. Furthermore, since every experimental signal is

subject to uncertainties, probability theory provides a logical approach to

tackle inverse problems. In particular, Bayesian probability theory (BPT)

has the natural ability to solve inverse problems through Bayes’ theorem. In

this approach, the number of possible solutions can be restricted as usual

through the forward model (e.g. using basis functions for a plasma profile),

but also through the so-called prior probability of the parameters of interest.

This makes BPT a powerful and flexible framework for solving inverse prob-

lems.7,8 In addition, a Bayesian approach yields a posterior distribution for

the parameters, instead of a single estimate like optimization-based methods.
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As such, the uncertainty of the parameter estimates can be calculated, given

the uncertainty on the data. Quantification of these uncertainties is of great

importance for the comparison of turbulent simulations with experimental

measurements.9,10

The main goal of this paper is to investigate numerically the feasibility

of the BPT approach to infer turbulent plasma properties from reflectome-

try signals by considering a simplified plasma model. We first propose a 2D

analytical model for the interaction of the probing reflectometer wave with

the electron density fluctuations. Then, a parametrization for the turbulent

fluctuations is introduced and Bayes’ theorem is used to estimate the poste-

rior probability distribution of a number of parameters that characterize the

fluctuations, given the measured reflectometer signal.

II PHYSICAL OPTICS MODEL FOR THE

PLASMA-WAVE INTERACTION

In reflectometry, a probing beam is launched and propagates through the

plasma until being reflected at the cutoff layer, where the refractive index

goes to zero. Reflectometry is a spatially localized diagnostic as most of the

plasma-wave interaction takes place close to the cutoff layer.11 Indeed, far

from the cutoff layer, the probing wave can be considered to propagate in

vacuum as the refractive index is close to unity. We take advantage of the

separation between the propagation region and the interaction region and
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we assume that the fluctuations of the reflectometer signal originate from

electron density fluctuations localized exactly at the cutoff layer. The plasma-

wave interaction is therefore modeled as the illumination of a corrugated thin

conducting surface by a Gaussian probing beam of width w and wave number

k = 2π/λ. For the case of conventional reflectometry, i.e. normal incidence

and reflection, the physical optics approximation gives a remarkably simple

expression for the scattered field12 ρ(t):

ρ(t) = A

∫ L

−L
e−x

2/w2

ei2kr(x,t)dx. (1)

The scattered field results from the integration along a surface of length

2L >> w of the product of a Gaussian beam function and a term describing

the displacement of the cutoff layer r(x, t) due to the presence of density

fluctuations. The constant A is used to normalize the scattered field to the

field specularly reflected from a flat surface.

As the fluctuations are elongated along the magnetic field lines, the tur-

bulence is almost homogeneous in the toroidal direction over the beam spot

size.12 Consequently, we have restricted our analysis to the poloidal direc-

tion. A schematic representation of the model is shown in Fig. 1, where the

x-direction approximately corresponds to the poloidal direction in a tokamak.

In this work, the simulations are performed with a time resolution ∆t =

1.5×105/f , in order to mimic a reflectometer operating at f = 50 GHz with a

time resolution of 3 µs. The size of the probing beam is set to w = 5λ ∼ 3 cm
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Fig. 1: Schematic representation of the model used to describe the plasma-
wave interaction through the illumination of a corrugated surface by a Gaus-
sian beam.

which is typical of modern reflectometers. All temporal and spatial quantities

are systematically normalized to the time resolution ∆t and the probing

wavelength λ, respectively.

III PARAMETRIZATION OF THE ELEC-

TRON DENSITY FLUCTUATIONS

In our simulation study, the effects of electron density fluctuations on the cut-

off layer are represented by a 2D correlated Gaussian random surface defined

by three parameters: the amplitude (height) of the fluctuations h, together

with the correlation length Lc and correlation time tc of the fluctuations. h

can be understood as the deviation of the cutoff layer with respect to its equi-
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librium position, whereas Lc and tc are the characteristic size and time of the

fluctuations, respectively. In practice, a surface of length 2L and duration

T is obtained in two steps.13 First, we generate bivariate random numbers

with mean zero and standard deviation h. Then, the random numbers are

convolved with Gaussian filters in order to obtain the desired correlation

properties.

An example of a random surface computed on a grid Nx×Nt = 200×2000

with the parameters h/λ = 0.01, tc/∆t = 5 and Lc/λ = 2 is shown in Fig

2a. The length of the surface was set to L/λ = 100 but we have represented

the surface in the interval x/λ = [−15; 15] in order to reveal the fine scales

of the fluctuations.

Figs. 2e and f show the complex reflectometer signal computed from the

random surface and the corresponding power spectrum, respectively. The

power spectrum is bell-shaped and has a central peak that corresponds to

the specular component of the scattered field. Bell-shaped spectra were ob-

served in several tokamaks, including Tore Supra, Textor and JET, in plasmas

dominated by ion temperature gradient turbulence.14

The properties of the surface were verified by comparing its statistics

against the data model. As expected, Fig. 2c shows that the normalized his-

togram of the height of the fluctuations is well fitted by a Gaussian distribu-

tion with parameters (µ, σ) = (0, h). The averaged autocorrelation functions

(ACFs) computed from the data along the t- and x-directions are depicted in

Figs. 2b and d, respectively. To ensure that the ACFs follow the underlying
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Fig. 2: a) Example of a simulated Gaussian correlated random surface. b)
and d) are the autocorrelation function (ACF) of the random surface com-
puted along the t- and x-directions, respectively. The corresponding corre-
lation length and time are indicated. c) shows the distribution of the fluctu-
ations. For b) to d), the solid curves represent the data whereas the dashed
curves represent the model. e) Complex reflectometer signal associated to
the random surface and f) corresponding power spectrum.
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Gaussian model, the proportions of the surface have to be much larger than

the scales of the fluctuations, namely tc/T << 1 and Lc/2L << 1.

IV BAYES’ THEOREM AND THE SOLU-

TION TO THE INVERSE PROBLEM

Bayes’ theorem is a straightforward consequence of the rule of conditional

probability. Given two events A and B, the probability of A given B is related

to the probability of B given A such that p(A|B)p(B) = p(B|A)p(A). Re-

placing A by parameters and B by data, Bayes’ theorem naturally provides

a solution to the inverse problem as it allows us to estimate the probability

of a specific set of parameters given the outcome of an experiment. Applied

to our problem, Bayes’ theorem reads:

p(h, tc, Lc|{di}, I)︸ ︷︷ ︸
posterior

= p({di}|h, tc, Lc, I)︸ ︷︷ ︸
likelihood

p(h, tc, Lc|I)︸ ︷︷ ︸
prior

/ p({di}|I)︸ ︷︷ ︸
evidence

, (2)

where h, tc and Lc are the turbulent parameters and di the measured signal.

Any further background information is represented by the symbol I, which

is sometimes assumed implicitly.

The great benefit of Bayes’ theorem lies in the fact that it relates the

posterior distribution, which is the solution of the inverse problem, to other

terms which are much easier to evaluate. Each term in Eq. 1 bears a spe-
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cific name. In parameter inference problems, the evidence simply acts as

a normalizing constant and will therefore be disregarded here. The prior

probability is used to encode the knowledge about the physical system that

is available before analyzing the data. In this work, we assume that only

lower and upper bounds on the parameters are known and, accordingly, we

choose a uniform prior in order to give an equal weight to any possible so-

lution {h, tc, Lc} within the bounds. In tokamaks, the turbulent time scale

is bounded by the inverse of the ion gyrofrequency ωci and the confinement

time τe. Similarly, the characteristic size of the density fluctuations should

be larger than the ion gyroradius ρi, but smaller than the typical size of the

device a. The fluctuation height h is obviously positive and is also bounded

by the device length scale a. The prior distribution is therefore defined as

follows:

p(h, tc, Lc|I) =

 cst. if 0 ≤ h ≤ a, ωci ≤ tc ≤ τe, ρi ≤ Lc ≤ a,

0 otherwise.

(3)

The likelihood, noted L(θ|d) to emphasize the dependence on the system

parameters, gives the probability density to observe the measured signal d

given the parameters θ = {h, tc, Lc}. The likelihood evaluates the difference

between the measured signal d and the data simulated with the forward

model F (θ). Under the hypothesis that the experimental signal is correctly
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described by the forward model, the likelihood should be large if the measured

signal is consistent with the considered set of turbulent parameters, within

the measurement error.

Strictly speaking, in this work no signals are measured experimentally

since all our experiments are numerical. Instead, we simulate experimen-

tal data d by calculating the reflectometer signal associated to a known set

of original parameters θ0 = {h0, t0c , L0
c}. Our main objective is thus to in-

vestigate for which conditions it is possible to correctly infer the original

parameters θ0.

The problem treated here includes an extra complication, compared to

most studies of inverse problems, as it contains an inherent stochastic compo-

nent. Indeed, the turbulent surface is defined as a random process, meaning

that two realizations generated with exactly the same original parameters

will lead to two different surfaces. As a consequence, the raw reflectometer

signal scattered by such surfaces will also show different waveforms. This is

illustrated in Fig. 3, where the model signal (solid line) has been simulated

with the same parameters as the ‘measured’ signal (dashed line). Thus, the

raw reflectometer signal is not a convenient choice for computation of the

likelihood.

To resolve this situation, we consider in the likelihood the power spectrum

of the measured reflectometer signal. The power spectrum can be expected

to be related in a more-or-less deterministic way to the true parameters of

the surface, in contrast to the reflectometer signal itself. As an illustration,
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Fig. 3: a) Power signals computed for two realizations of the turbulent sur-
faces generated with the parameters h/λ = 0.2, Lc/λ = 1 and tc/∆t = 10
and computed on a grid Nx × Nt = 200 × 2000. The beam width is set
to w/λ = 5. The associated power spectra computed from the complex
reflectometer signals are shown in b).

Fig. 3b shows the power spectrum computed from the scattered field for the

measured and model signals. Contrary to the reflected power represented

in Fig. 3 a, the power spectrum is approximately constant if the turbulent

parameters are fixed.

IV.A Likelihood of the Power Spectrum

The choice of the likelihood should be consistent with the random uncertain-

ties affecting the ‘measured’ and modeled signals. The uncertainties on the

power spectrum, that are responsible for the slight differences between the

curves depicted in Fig. 3b, have a statistical nature. These uncertainties

appear because the time series used for the computation of the spectrum has

a finite length. The distribution of the power spectrum P̂ (fi)
m at frequency

fi, computed from the modeled signal and averaged over Nwin independent
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windows, sliding over the signal, is given by15

2Nwin
P̂ (fi)

m

P (fi)true
∼ χ2(2Nwin). (4)

Here, fi is any frequency obeying 0 < |fi∆t| < 1/2 and P (fi)
true stands for

the true power spectrum computed in the limit of an infinitely long time

series. Hence, the ratio between the estimated and the true power spectrum

follows a χ2 distribution with 2Nwin degrees of freedom. The mean and

standard deviation of this distribution are given by µ = 2Nwin and σ =
√

2Nwin, respectively. We therefore deduce that the relative uncertainty on

the average power spectrum, quantified by εm = σ/µ = 1/
√

2Nwin, decreases

with the square root of the number of windows. We will use a sampling

method to estimate the posterior distribution, therefore a large number of

model signals will need to be computed. As a result, increasing Nwin to

reduce εm quickly becomes computationally prohibitive. In practice, the

model power spectra were computed from Nm
t = 2000-point time series using

the Welch algorithm with a 128-point sliding Hamming window, which leads

to a random uncertainty εm ≈ 18%.

The distribution defined in Eq. 4 measures the difference between the

modeled and the true power spectrum, but what is actually required is a

measure of the difference between the modeled and the ‘measured’ power

spectrum. Contrary to the modeled power spectrum, in our study the mea-

sured power spectrum is computed only once. It is therefore possible to
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estimate the measured power spectrum from a time series of duration Nd
t

that lasts much longer than the model time series. By setting Nd
t = 100Nm

t ,

the uncertainty on the average measured spectrum εd ≈ 1.8% becomes neg-

ligible with respect to εm, allowing us to consider that the measured and

the true power spectrum are equal. We will therefore use the likelihood

L(θ|di) ∼ χ2(2Nwin) for the quantity P̂ (fi,θ)m/P̂ (fi)
d which evaluates the

ratio of the modeled power spectrum Fi(θ) = P̂ (fi,θ)m to the measured

power spectrum di = P̂ (fi)
d at the frequency fi. The full likelihood is given

by the product of the individual likelihoods L(θ|d) = ΠN
i=1L(θ|di), where

N = 16 frequencies are used to discretize the power spectrum.

The validity of the likelihood was checked by computing 1000 realizations

of P̂ (fi,θ)m for the same parameters θ. Fig. 4 shows that the normalized

histogram of 2NwinP̂ (fi,θ)m/P̂ (fi)
d is indeed correctly represented by the

χ2 distribution.

IV.B Sampling the Posterior Distribution

The posterior distribution for our problem cannot be computed analytically

but has to be estimated using numerical methods. Markov Chain Monte

Carlo (MCMC) is widely used in Bayesian inference to draw samples from

the posterior distribution.16 We used a random-walk MCMC algorithm, cre-

ating a Markov chain of samples drawn from a so-called proposal distribution.

If θ(t) denotes the current state of the chain at ‘time’ t, then a new sample

θ(t+1) is accepted with probability determined by the ratio of the posterior
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Fig. 4: Fig. 4. Normalized histogram computed for 1000 realizations of the
quantity X(fi) = 2NwinP̂ (fi,θ)m/P̂ (fi)

d for frequency fi∆t = 0.156. The
parameters have been set to {h/λ, Lc/λ, tc/∆t} = {0.01, 2, 2}. The dashed
curve represents the theoretical χ2 distribution with 2Nwin = 32 degrees of
freedom.

densities p(θ(t+1)|d, I)/p(θ(t)|d, I). The sample is always accepted if it in-

creases the posterior density and eventually the chain converges towards the

true posterior distribution.

Results obtained in MCMC simulations performed with the original pa-

rameters set to {h0/λ, L0
c/λ, t

0
c/∆t} = {0.1, 4, 4} are shown in Fig. 5. The

values of the original parameters were chosen to be characteristic of plasma

turbulence under tokamak core conditions. Given that the simulations were

performed for λ = 5.9 mm and ∆t = 3 µs (see Section II), the plasma pa-

rameters L0
c/λ = 4 and t0c/∆t = 4 translate into a normalized poloidal wave

number kθρi = 0.4 and an eddy turn-over time τ = 12 µs if we consider a

deuterium plasma with a magnetic field B = 4 T and an ion temperature

Ti = 1 keV. The above values are typical for ion temperature gradient or
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trapped electron mode turbulence.17,18 The mean cutoff layer displacement h

can be translated into the more conventional fluctuation level using a mixing

length estimate19 δn/n ∼ h/Ln. Taking a density gradient scale Ln = 30 cm,

h0/λ = 0.1 corresponds to a fluctuation level of about δn/n ≈ 2%.

In panels a–c of Fig. 5, part of the chains obtained with the MCMC

method are shown. The so-called burn-in period can be noticed that is needed

before the chain starts to converge. A Laplacian proposal distribution was

employed, which, thanks to its heavy tails, allows a good chance of large

jumps in order to efficiently explore the parameter space. In total, 5 × 104

samples were generated. The first 500 samples were disregarded as they

correspond to the burn-in period. About 900 samples were accepted after

the burn-in period. These samples were used to estimate the posterior.

The convergence of the chain was investigated using several indicators.

The time trace of the posterior, shown in fig. 5g, quickly reaches a steady

state, we therefore consider that the chain converges after about 500 samples.

Figs. 5i and h show the cross- (CCF) and the auto-correlation functions

(ACF) for the different parameters, respectively. The fluctuations amplitude

and time scale are strongly correlated whereas the correlation between the

amplitude and length scale as well as the correlation between the length and

time scale is rather modest.

For each parameter, the ACF goes rapidly to zero indicating a satisfac-

tory mixing of the chain. The number of independent samples Nind can be

estimated from the ACF properties such that Nind ∼ Nacc/lACF , where Nacc

18
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Fig. 5: Fig. 5. Top left panels: parameter samples generated during an
MCMC run. The dots in panels (a), (b) and (c) represent the accepted sam-
ples for the fluctuation amplitude h, characteristic length Lc and time tc,
respectively. The corresponding estimated posterior distributions are repre-
sented in the panels (e-f) on the top right. The vertical dashed lines indicate
the values of the original parameters. The open circles correspond to the
peak values of the posterior distributions whereas the horizontal lines denote
the 95% credible intervals. Bottom panels: diagnostics used for assessing
the convergence of the chain. (g) Evolution of the posterior probability. (h)
Auto- and (i) cross-correlation functions, each curve is labeled with the cor-
responding parameters.
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and lACF are the number of accepted samples and the auto-correlation lag,

respectively. The auto-correlation lags were obtained by fitting the ACF with

an exponential function. The number of independent samples for the ampli-

tude, length and time scale is about Nind ∼ 160, Nind ∼ 366 and Nind ∼ 226,

respectively.

Histograms obtained from the MCMC run are displayed in panels d–f of

Fig. 5, for the parameters h, Lc and tc, respectively. The best estimates for

each of the parameters are taken as the peak values (mode) of the posterior

distributions, while the error bars are derived from the bounds of the 95%

credible intervals. For instance, the best estimate for the fluctuation ampli-

tude is h/λ = 0.946 and the true value h0/λ (in this case h0/λ = 0.1) lies

with probability 0.95 in the interval [0.085, 0.120].

Fig. 5 also reveals that the estimates of the fluctuation amplitude h and

time scale tc are more accurate than the estimate of the length scale Lc. The

reason is that the power spectrum depends mostly on the amplitude and time

scale of the turbulence. Accordingly, the posterior distribution for Lc is, from

the relative point of view, wider than the posteriors for h and tc. Still, it is

possible to fairly well infer the characteristic length of the turbulence. This

is remarkable in view of the spatial averaging process related to the finite

width of the illuminating beam.

Next, we show the performance of the method for various choices of the

original parameter values describing the random surface, covering a range

of amplitudes and spatial and temporal scales. The results are presented in
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Fig. 6 where each column corresponds to a different parameter set. The

left column of Fig. 6 shows that for very low amplitude fluctuations, it

becomes more difficult to infer h and Lc. The posterior distributions are

significantly skewed and the relative error on the best estimate is about 50%.

The method works well for a moderate fluctuation amplitude as shown in

the center and right columns of Fig. 6. As before, the inferred values of

Lc are less accurate compared to those of h and tc. The method starts to

fail if we keep increasing the fluctuation amplitude. From h0/λ & 0.5, the

reflectometer signal saturates and as a consequence the power spectrum is

no longer dependent on the values of the turbulent parameters.

V CONCLUSION AND PERSPECTIVES

We have proposed a new and innovative approach for the interpretation of a

fluctuating reflectometer signal. The approach makes use of Bayesian prob-

ability theory to infer the properties of turbulent fluctuations on the basis of

the measured reflectometer signal and a priori information. This paper pri-

marily aims at numerically investigating the feasibility of such an approach.

We have therefore considered a simplified model where the interaction of

the probing beam with correlated Gaussian fluctuations was described in the

framework of physical optics. The difficulties posed by the intrinsic stochas-

tic properties of the turbulent fluctuations have been overcome by evaluating

the likelihood of the power spectrum instead of the raw reflectometer signal.
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We have been able to infer with a satisfactory accuracy the properties of

a simulated fluctuating surface with parameters relevant to tokamak core

plasma conditions. The main limiting factor of the method turns out to be

the fluctuation amplitude. Indeed, if the turbulent activity is too strong,

h/λ & 0.5, the reflectometer signal saturates and our method breaks down.

In practice, this might only happen in the vicinity of the boundary between

closed and open magnetic field line regions where the fluctuation level is

usually very large.

The method is clearly only in its infancy and much work remains to be

done before the Bayesian approach can be routinely used to process real fluc-

tuating reflectometer signals. While the assumption of Gaussian fluctuations

seems reasonable in core plasmas,20–22 the physical optics model used to de-

scribe the plasma-wave interaction has a limited domain of application. The

simplicity of this model relies on neglecting the presence of the plasma on the

wave path. A comparison with more realistic models has suggested that the

physical optics model might be a good approximation for O-mode reflectom-

etry in regions where the refractive index gradient is steep.23 Nevertheless,

the domain of application of the simple model might be extended for X-mode

reflectometry, given that the refractive index is generally steeper for X-mode

waves than for O-mode waves due to the dependence on the magnetic field.

In the near future, we plan to consider also the effect of instrumental noise

on the reflectometer signal. Contrary to the finite length of the signal which

leads to stochastic uncertainties, instrumental noise will produce a system-
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atic modification of the statistical quantities derived from the reflectometer

signal. As a consequence, we envision to treat instrumental noise as an extra

parameter which can also be inferred with the Bayesian approach. The first

attempts of including instrumental noise have revealed that it is probably

not sufficient to consider only the power spectrum in order to correctly in-

fer the parameters with noisy signals. Additional statistical quantities, such

as histograms computed from the complex reflectometer signal, might also

bring new and relevant information.
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