11 research outputs found

    Complexity in the binding of minor groove agents: netropsin has two thermodynamically different DNA binding modes at a single site

    Get PDF
    Structural results with minor groove binding agents, such as netropsin, have provided detailed, atomic level views of DNA molecular recognition. Solution studies, however, indicate that there is complexity in the binding of minor groove agents to a single site. Netropsin, for example, has two DNA binding enthalpies in isothermal titration calorimetry (ITC) experiments that indicate the compound simultaneously forms two thermodynamically different complexes at a single AATT site. Two proposals for the origin of this unusual observation have been developed: (i) two different bound species of netropsin at single binding sites and (ii) a netropsin induced DNA hairpin to duplex transition. To develop a better understanding of DNA recognition complexity, the two proposals have been tested with several DNAs and the methods of mass spectrometry (MS), polyacrylamide gel electrophoresis (PAGE) and nuclear magnetic resonance spectroscopy in addition to ITC. All of the methods with all of the DNAs investigated clearly shows that netropsin forms two different complexes at AATT sites, and that the proposal for an induced hairpin to duplex transition in this system is incorrect

    Thermodynamic Characterization of Linker Histone Binding Interactions with ds-DNA

    Get PDF
    Linker histones (H1) are the basic proteins in higher eukaryotes that are responsible for the final condensation of chromatin. H1 also plays an important role in regulating gene expression. H1 has been described as a transcriptional repressor as it limits the access of transcriptional factors to DNA. Linker histone binds to DNA that enters or exits the nucleosome. Several crystal structures have been published for the nucleosome (histone core/DNA complex), and the interactions of the core histone proteins with DNA are well understood. In contrast the location of the linker histone and its interactions with ds-DNA are poorly understood. In this study we have used isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and CD spectropolarimetry to determine the thermodynamic signatures and structural changes that accompany H1 binding to ds-DNA. The thermodynamic parameters for the binding of intact linker histones (H1.1, H1.4, and H10) to highly polymerized calf-thymus DNA and to short double stranded DNA oligomers have been determined. We have also determined the thermodynamics for binding of H10 C-terminal tail (H10-C) and globular domain (H10-G) to calf-thymus DNA. The real surprise in the energetics is that the enthalpy change for formation of the H1/DNA complex is very unfavorable and that H1/DNA complex formation is driven by very large positive changes in entropy. The binding site sizes for H1.1, H1.4, and H10 were determined to be 36bp, 32bp, and 36bp respectively. CD results indicate that CT-DNA is restructured upon complexation with either the full length H1 protein (H10) or its C-terminal domain (H10-C). In contrast, the structure of H10 is largely unchanged in the DNA complex. Temperature dependence of enthalpy change, osmotic stress and ionic strength dependence of Ka were tested using ITC. These results indicate that the entropy driven H1/DNA complexes are a result primarily from the expulsion of bound water molecules from the binding interface. This study provides new insights into the binding of linker Histone H1 to DNA. A better understanding of the functional properties of H1 and its interactions with DNA could provide new insights in understanding the role H1 in DNA condensation and transcriptional regulation

    Data on the purification and crystallization of the loss-of-function von Willebrand disease variant (p.Gly1324Ser) of the von Willebrand factor A1 domain

    Get PDF
    von Willebrand factor׳s (VWF) primary hemostatic responsibility is to deposit platelets at sites of vascular injury to prevent bleeding. This function is mediated by the interaction between the VWF A1 domain and the constitutively active platelet receptor, GPIbα. The crystal structure of the A1 domain harboring the von Willebrand disease (vWD) type 2M mutation p.Gly1324Ser has been recently published in the Journal of Biological Chemistry describing its effect on the function and structural stability of the A1 domain of VWF, “Mutational constraints on local unfolding inhibit the rheological adaptation of von Willebrand factor” [1]. The mutation introduces a side chain that thermodynamically stabilizes the domain by reducing the overall flexibility of the A1–GPIbα binding interface resulting in loss-of-function and bleeding due to the inability of A1 to adapt to a binding competent conformation under the rheological shear stress blood flow.In this data article we describe the production, quality control and crystallization of the p.Gly1324Ser vWD variant of the A1 domain of VWF. p.Gly1324Ser A1 was expressed in Escherichia coli as insoluble inclusion bodies. After the preparation of the inclusion bodies, the protein was solubilized, refolded, purified by affinity chromatography and crystallized. The crystal structure of the p.Gly1324Ser mutant of the A1 domain is deposited at the Protein Data Bank PDB: 5BV8 Keywords: von Willebrand factor, von Willebrand disease, Protein crystallization, Platelet adhesio

    Mutational Constraints on Local Unfolding Inhibit the Rheological Adaptation of von Willebrand Factor.

    No full text
    Unusually large von Willebrand factor (VWF), the first responder to vascular injury in primary hemostasis, is designed to capture platelets under the high shear stress of rheological blood flow. In type 2M von Willebrand disease, two rare mutations (G1324A and G1324S) within the platelet GPIbα binding interface of the VWF A1 domain impair the hemostatic function of VWF. We investigate structural and conformational effects of these mutations on the A1 domain's efficacy to bind collagen and adhere platelets under shear flow. These mutations enhance the thermodynamic stability, reduce the rate of unfolding, and enhance the A1 domain's resistance to limited proteolysis. Collagen binding affinity is not significantly affected indicating that the primary stabilizing effect of these mutations is to diminish the platelet binding efficiency under shear flow. The enhanced stability stems from the steric consequences of adding a side chain (G1324A) and additionally a hydrogen bond (G1324S) to His(1322) across the β2-β3 hairpin in the GPIbα binding interface, which restrains the conformational degrees of freedom and the overall flexibility of the native state. These studies reveal a novel rheological strategy in which the incorporation of a single glycine within the GPIbα binding interface of normal VWF enhances the probability of local unfolding that enables the A1 domain to conformationally adapt to shear flow while maintaining its overall native structure

    Video_2_The Chaperonin GroEL: A Versatile Tool for Applied Biotechnology Platforms.AVI

    No full text
    <p>The nucleotide-free chaperonin GroEL is capable of capturing transient unfolded or partially unfolded states that flicker in and out of existence due to large-scale protein dynamic vibrational modes. In this work, three short vignettes are presented to highlight our continuing advances in the application of GroEL biosensor biolayer interferometry (BLI) technologies and includes expanded uses of GroEL as a molecular scaffold for electron microscopy determination. The first example presents an extension of the ability to detect dynamic pre-aggregate transients in therapeutic protein solutions where the assessment of the kinetic stability of any folded protein or, as shown herein, quantitative detection of mutant-type protein when mixed with wild-type native counterparts. Secondly, using a BLI denaturation pulse assay with GroEL, the comparison of kinetically controlled denaturation isotherms of various von Willebrand factor (vWF) triple A domain mutant-types is shown. These mutant-types are single point mutations that locally disorder the A1 platelet binding domain resulting in one gain of function and one loss of function phenotype. Clear, separate, and reproducible kinetic deviations in the mutant-type isotherms exist when compared with the wild-type curve. Finally, expanding on previous electron microscopy (EM) advances using GroEL as both a protein scaffold surface and a release platform, examples are presented where GroEL-protein complexes can be imaged using electron microscopy tilt series and the low-resolution structures of aggregation-prone proteins that have interacted with GroEL. The ability of GroEL to bind hydrophobic regions and transient partially folded states allows one to employ this unique molecular chaperone both as a versatile structural scaffold and as a sensor of a protein's folded states.</p

    The Chaperonin GroEL: A Versatile Tool for Applied Biotechnology Platforms

    No full text
    The nucleotide-free chaperonin GroEL is capable of capturing transient unfolded or partially unfolded states that flicker in and out of existence due to large-scale protein dynamic vibrational modes. In this work, three short vignettes are presented to highlight our continuing advances in the application of GroEL biosensor biolayer interferometry (BLI) technologies and includes expanded uses of GroEL as a molecular scaffold for electron microscopy determination. The first example presents an extension of the ability to detect dynamic pre-aggregate transients in therapeutic protein solutions where the assessment of the kinetic stability of any folded protein or, as shown herein, quantitative detection of mutant-type protein when mixed with wild-type native counterparts. Secondly, using a BLI denaturation pulse assay with GroEL, the comparison of kinetically controlled denaturation isotherms of various von Willebrand factor (vWF) triple A domain mutant-types is shown. These mutant-types are single point mutations that locally disorder the A1 platelet binding domain resulting in one gain of function and one loss of function phenotype. Clear, separate, and reproducible kinetic deviations in the mutant-type isotherms exist when compared with the wild-type curve. Finally, expanding on previous electron microscopy (EM) advances using GroEL as both a protein scaffold surface and a release platform, examples are presented where GroEL-protein complexes can be imaged using electron microscopy tilt series and the low-resolution structures of aggregation-prone proteins that have interacted with GroEL. The ability of GroEL to bind hydrophobic regions and transient partially folded states allows one to employ this unique molecular chaperone both as a versatile structural scaffold and as a sensor of a protein's folded states

    Video_1_The Chaperonin GroEL: A Versatile Tool for Applied Biotechnology Platforms.AVI

    No full text
    <p>The nucleotide-free chaperonin GroEL is capable of capturing transient unfolded or partially unfolded states that flicker in and out of existence due to large-scale protein dynamic vibrational modes. In this work, three short vignettes are presented to highlight our continuing advances in the application of GroEL biosensor biolayer interferometry (BLI) technologies and includes expanded uses of GroEL as a molecular scaffold for electron microscopy determination. The first example presents an extension of the ability to detect dynamic pre-aggregate transients in therapeutic protein solutions where the assessment of the kinetic stability of any folded protein or, as shown herein, quantitative detection of mutant-type protein when mixed with wild-type native counterparts. Secondly, using a BLI denaturation pulse assay with GroEL, the comparison of kinetically controlled denaturation isotherms of various von Willebrand factor (vWF) triple A domain mutant-types is shown. These mutant-types are single point mutations that locally disorder the A1 platelet binding domain resulting in one gain of function and one loss of function phenotype. Clear, separate, and reproducible kinetic deviations in the mutant-type isotherms exist when compared with the wild-type curve. Finally, expanding on previous electron microscopy (EM) advances using GroEL as both a protein scaffold surface and a release platform, examples are presented where GroEL-protein complexes can be imaged using electron microscopy tilt series and the low-resolution structures of aggregation-prone proteins that have interacted with GroEL. The ability of GroEL to bind hydrophobic regions and transient partially folded states allows one to employ this unique molecular chaperone both as a versatile structural scaffold and as a sensor of a protein's folded states.</p
    corecore