65 research outputs found

    The Role of Eddies and Topography in the Export of Shelf Waters From the West Antarctic Peninsula Shelf

    Get PDF
    Oceanic heat strongly influences the glaciers and ice shelves along West Antarctica. Prior studies show that the subsurface onshore heat flux from the Southern Ocean on the shelf occurs through deep, glacially carved channels. The mechanisms enabling the export of colder shelf waters to the open ocean, however, have not been determined. Here, we use ocean glider measurements collected near the mouth of Marguerite Trough (MT), west Antarctic Peninsula, to reveal shelf‐modified cold waters on the slope over a deep (2,700 m) offshore topographic bank. The shelf hydrographic sections show subsurface cold features (ξ \u3c=1.5 °C), and associated potential vorticity fields suggest a significant instability‐driven eddy field. Output from a high‐resolution numerical model reveals offshore export modulated by small (6 km), cold‐cored, cyclonic eddies preferentially generated along the slope and at the mouth of MT. While baroclinic and barotropic instabilities appear active in the surrounding open ocean, the former is suppressed along the steep shelf slopes, while the latter appears enhanced. Altimetry and model output reveal the mean slope flow splitting to form an offshore branch over the bank, which eventually forms a large (116 km wide) persistent lee eddy, and an onshore branch in MT. The offshore flow forms a pathway for the small cold‐cored eddies to move offshore, where they contribute significantly to cooling over the bank, including the large lee eddy. These results suggest eddy fluxes, and topographically modulated flows are key mechanisms for shelf water export along this shelf, just as they are for the shoreward warm water transport

    Circulation, retention, and mixing of waters within the Weddell-Scotia Confluence, Southern Ocean:The role of stratified Taylor columns

    Get PDF
    The waters of the Weddell-Scotia Confluence (WSC) lie above the rugged topography of the South Scotia Ridge in the Southern Ocean. Meridional exchanges across the WSC transfer water and tracers between the Antarctic Circumpolar Current (ACC) to the north and the subpolar Weddell Gyre to the south. Here, we examine the role of topographic interactions in mediating these exchanges, and in modifying the waters transferred. A case study is presented using data from a free-drifting, intermediate-depth float, which circulated anticyclonically over Discovery Bank on the South Scotia Ridge for close to 4 years. Dimensional analysis indicates that the local conditions are conducive to the formation of Taylor columns. Contemporaneous ship-derived transient tracer data enable estimation of the rate of isopycnal mixing associated with this column, with values of O(1000 m2/s) obtained. Although necessarily coarse, this is of the same order as the rate of isopycnal mixing induced by transient mesoscale eddies within the ACC. A picture emerges of the Taylor column acting as a slow, steady blender, retaining the waters in the vicinity of the WSC for lengthy periods during which they can be subject to significant modification. A full regional float data set, bathymetric data, and a Southern Ocean state estimate are used to identify other potential sites for Taylor column formation. We find that they are likely to be sufficiently widespread to exert a significant influence on water mass modification and meridional fluxes across the southern edge of the ACC in this sector of the Southern Ocean

    Modification of deep waters in Marguerite Bay, western Antarctic Peninsula, caused by topographic overflows

    Get PDF
    Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area

    The seasonal cycle of carbonate system processes in Ryder Bay, West Antarctic Peninsula

    Get PDF
    The carbon cycle in seasonally sea-ice covered waters remains poorly understood due to both a lack of observational data and the complexity of the system. Here we present three consecutive seasonal cycles of upper ocean dissolved inorganic carbon (DIC) and total alkalinity measurements from Ryder Bay on the West Antarctic Peninsula. We attribute the observed changes in DIC to four processes: mixing of water masses, air–sea CO2 flux, calcium carbonate precipitation/dissolution and photosynthesis/respiration. This approach enables us to resolve the main drivers of the seasonal DIC cycle and also investigate the mechanisms behind interannual variability in the carbonate system. We observe a strong, asymmetric seasonal cycle in the carbonate system, driven by physical processes and primary production. In summer, melting glacial ice and sea ice and a reduction in mixing with deeper water reduce the concentration of DIC in surface waters. The dominant process affecting the carbonate system is net photosynthesis which reduces DIC and the fugacity of CO2, making the ocean a net sink of atmospheric CO2. In winter, mixing with deeper, carbon-rich water and net heterotrophy increase surface DIC concentrations, resulting in pH as low as 7.95 and aragonite saturation states close to 1. We observe no clear seasonal cycle of calcium carbonate precipitation/dissolution but some short-lived features of the carbonate time series strongly suggest that significant precipitation of calcium carbonate does occur in the Bay. The variability observed in this study demonstrates that changes in mixing and sea-ice cover significantly affect carbon cycling in this dynamic environment. Maintaining this unique time series will allow the carbonate system in seasonally sea-ice covered waters to be better understood

    Plasticity in dormancy behaviour of Calanoides acutus in Antarctic coastal waters

    Get PDF
    Copepods that enter dormancy, such as Calanoides acutus, are key primary consumers in Southern Ocean food webs where they convert a portion of the seasonal phytoplankton biomass into a longer-term energetic and physiological resource as wax ester (WE) reserves. We studied the seasonal abundance and lipid profiles of pre-adult and adult C. acutus in relation to phytoplankton dynamics on the Western Antarctic Peninsula. Initiation of dormancy occurred when WE unsaturation was relatively high, and chlorophyll a (Chl a) concentrations, predominantly attributable to diatoms, were reducing. Declines in WE unsaturation during the winter may act as a dormancy timing mechanism with increased Chl a concentrations likely to promote sedimentation that results in a teleconnection between the surface and deep water inducing ascent. A late summer diatom bloom was linked to early dormancy termination of females and a second spawning event. The frequency and duration of high biomass phytoplankton blooms may have consequences for the lifespan of the iteroparous C. acutus females (either 1 or 2 years) if limited by a total of two main spawning events. Late summer recruits, generated by a second spawning event, likely benefitted from lower predation and high phytoplankton food availability. The flexibility of copepods to modulate their life-cycle strategy in response to bottom-up and top-down conditions enables individuals to optimize their probability of reproductive success in the very variable environment prevalent in the Southern Ocean

    The seasonal cycle of ocean-atmosphere CO2 Flux in Ryder Bay, West Antarctic Peninsula

    Get PDF
    Approximately 15 million km2 of the Southern Ocean is seasonally ice covered, yet the processes affecting carbon cycling and gas exchange in this climatically important region remain inadequately understood. Here, 3 years of dissolved inorganic carbon (DIC) measurements and carbon dioxide (CO2) fluxes from Ryder Bay on the west Antarctic Peninsula (WAP) are presented. During spring and summer, primary production in the surface ocean promotes atmospheric CO2 uptake. In winter, higher DIC, caused by net heterotrophy and vertical mixing with Circumpolar Deep Water, results in outgassing of CO2 from the ocean. Ryder Bay is found to be a net sink of atmospheric CO2 of 0.59–0.94 mol C m−2 yr−1 (average of 3 years). Seasonal sea ice cover increases the net annual CO2 uptake, but its effect on gas exchange remains poorly constrained. A reduction in sea ice on the WAP shelf may reduce the strength of the oceanic CO2 sink in this region

    Changing distributions of sea ice melt and meteoric water west of the Antarctic Peninsula

    Get PDF
    The Western Antarctic Peninsula has recently undergone rapid climatic warming, with associated decreases in sea ice extent and duration, and increases in precipitation and glacial discharge to the ocean. These shifts in the freshwater budget can have significant consequences on the functioning of the regional ecosystem, feedbacks on regional climate, and sea-level rise. Here we use shelf-wide oxygen isotope data from cruises in four consecutive Januaries (2011–2014) to distinguish the freshwater input from sea ice melt separately from that due to meteoric sources (precipitation plus glacial discharge). Sea ice melt distributions varied from minima in 2011 of around 0 % up to maxima in 2014 of around 4–5%. Meteoric water contribution to the marine environment is typically elevated inshore, due to local glacial discharge and orographic effects on precipitation, but this enhanced contribution was largely absent in January 2013 due to anomalously low precipitation in the last quarter of 2012. Both sea ice melt and meteoric water changes are seen to be strongly influenced by changes in regional wind forcing associated with the Southern Annular Mode and the El Niño–Southern Oscillation phenomenon, which also impact on net sea ice motion as inferred from the isotope data. A near-coastal time series of isotope data collected from Rothera Research Station reproduces well the temporal pattern of changes in sea ice melt, but less well the meteoric water changes, due to local glacial inputs and precipitation effects

    Inter-decadal variability of phytoplankton biomass along the coastal West Antarctic Peninsula

    Get PDF
    The West Antarctic Peninsula (WAP) is a climatically sensitive region where periods of strong warming have caused significant changes in the marine ecosystem and food-web processes. Tight coupling between phytoplankton and higher trophic levels implies that the coastal WAP is a bottom-up controlled system, where changes in phytoplankton dynamics may largely impact other food-web components. Here, we analysed the inter-decadal time series of year-round chlorophyll-a (Chl) collected from three stations along the coastal WAP: Carlini Station at Potter Cove (PC) on King George Island, Palmer Station on Anvers Island and Rothera Station on Adelaide Island. There were trends towards increased phytoplankton biomass at Carlini Station (PC) and Palmer Station, while phytoplankton biomass declined significantly at Rothera Station over the studied period. The impacts of two relevant climate modes to the WAP, the El Niño-Southern Oscillation and the Southern Annular Mode, on winter and spring phytoplankton biomass appear to be different among the three sampling stations, suggesting an important role of local-scale forcing than large-scale forcing on phytoplankton dynamics at each station. The inter-annual variability of seasonal bloom progression derived from considering all three stations together captured ecologically meaningful, seasonally co-occurring bloom patterns which were primarily constrained by water-column stability strength. Our findings highlight a coupled link between phytoplankton and physical and climate dynamics along the coastal WAP, which may improve our understanding of overall WAP food-web responses to climate change and variability

    Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers

    Get PDF
    Coastal zones of Antarctica harbor rich but highly variable phytoplankton communities. The mechanisms that control the dynamics of these communities are not well defined. Here we elucidate the mechanisms that drive seasonal species succession, based on algal photophysiological characteristics and environmental factors. For this, phytoplankton community structure together with oceanographic parameters was studied over a 5‐year period (2012–2017) at Rothera Station at Ryder Bay (Western Antarctic Peninsula). Algal pigment patterns and photophysiological studies based on fluorescence analyses were combined with data from the Rothera Time‐Series program. Considerable interannual variation was observed, related to variations in wind‐mixing, ice cover and an El Niño event. Clear patterns in the succession of algal classes became manifest when combining the data collected over the five successive years. In spring, autotrophic flagellates with a high light affinity were the first to profit from increasing light and sea ice melt. These algae most likely originated from sea‐ice communities, stressing the role of sea ice as a seeding vector for the spring bloom. Diatoms became dominant towards summer in more stratified and warmer surface waters. These communities displayed significantly lower photoflexibility than spring communities. There are strong indications for mixotrophy in cryptophytes, which would explain much of their apparently random occurrence. Climate models predict continuing retreat of Antarctic sea‐ice during the course of this century. For the near‐future we predict that the marginal sea‐ice zone will still harbor significant communities of haptophytes and chlorophytes, whereas increasing temperatures will mainly be beneficial for diatoms

    Shift from Carbon Flow through the Microbial Loop to the Viral Shunt in Coastal Antarctic Waters during Austral Summer

    Get PDF
    The relative flow of carbon through the viral shunt and the microbial loop is a pivotal factor controlling the contribution of secondary production to the food web and to rates of nutrient remineralization and respiration. The current study examines the significance of these processes in the coastal waters of the Antarctic during the productive austral summer months. Throughout the study a general trend towards lower bacterioplankton and heterotrophic nanoflagellate (HNF) abundances was observed, whereas virioplankton concentration increased. A corresponding decline of HNF grazing rates and shift towards viral production, indicative of viral infection, was measured. Carbon flow mediated by HNF grazing decreased by more than half from 5.7 ”g C L−1 day−1 on average in December and January to 2.4 ”g C L−1 day−1 in February. Conversely, carbon flow through the viral shunt increased substantially over the study from on average 0.9 ”g C L−1 day−1 in December to 7.6 ”g C L−1 day−1 in February. This study shows that functioning of the coastal Antarctic microbial community varied considerably over the productive summer months. In early summer, the system favors transfer of matter and energy to higher trophic levels via the microbial loop, however towards the end of summer carbon flow is redirected towards the viral shunt, causing a switch towards more recycling and therefore increased respiration and regeneration
    • 

    corecore