11 research outputs found

    Development of the PRSEUS Multi-Bay Pressure Box for a Hybrid Wing Body Vehicle

    Get PDF
    NASA has created the Environmentally Responsible Aviation Project to explore and document the feasibility, benefits, and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. Although such novel configurations like the Hybrid Wing Body (HWB) offer better aerodynamic performance as compared to traditional tube-and-wing aircraft, their blended wing shapes also pose significant new design challenges. Developing an improved structural concept that is capable of meeting the structural weight fraction allocated for these non-circular pressurized cabins is the primary obstacle in implementing large lifting-body designs. To address this challenge, researchers at NASA and The Boeing Company are working together to advance new structural concepts like the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), which is an integrally stiffened panel design that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. The large-scale multi-bay fuselage test article described in this paper is the final specimen in a building-block test program that was conceived to demonstrate the feasibility of meeting the structural weight goals established for the HWB pressure cabin

    Status of Advanced Stitched Composite Aircraft Structures

    Get PDF
    No abstract availabl

    Hybrid Wing Body Multi-Bay Test Article Analysis and Assembly Final Report

    Get PDF
    This report summarizes work performed by The Boeing Company, through its Boeing Research & Technology organization located in Huntington Beach, California, under the Environmentally Responsible Aviation (ERA) project. The report documents work performed to structurally analyze and assemble a large-scale Multi-bay Box (MBB) Test Article capable of withstanding bending and internal pressure loadings representative of a Hybrid Wing Body (HWB) aircraft. The work included fabrication of tooling elements for use in the fabrication and assembly of the test article

    PRSEUS Panel Fabrication Final Report

    Get PDF
    NASA and the Boeing Company have been working together under the Environmentally Responsible Aviation Project to develop stitched unitized structure for reduced weight, reduced fuel burn and reduced pollutants in the next generation of commercial aircraft. The structural concept being evaluated is PRSEUS (Pultruded Rod Stitched Efficient Unitized Structure). In the PRSEUS concept, dry carbon fabric, pultruded carbon rods, and foam are stitched together into large preforms. Then these preforms are infused with an epoxy resin into large panels in an out-of-autoclave process. These panels have stiffeners in the length-wise and width-wise directions but contain no fasteners because all stiffeners are stitched to the panel skin. This document contains a description of the fabrication of panels for use in the 30-foot-long Multi-Bay Box test article to be evaluated at NASA LaRC

    Fabrication of Lower Section and Upper Forward Bulkhead Panels of the Multi-Bay Box and Panel Preparation

    Get PDF
    NASA and the Boeing Co. have been working together under the Environmentally Responsible Aviation Project to develop stitched unitized structure for reduced weight, reduced fuel burn and reduced pollutants in the next generation of commercial aircraft. The structural concept being evaluated is PRSEUS (Pultruded Rod Stitched Efficient Unitized Structure). In the PRSEUS concept, dry carbon fabric, pultruded carbon rods, and foam are stitched together into large preforms. Then these preforms are infused with an epoxy resin into large panels in an out-of-autoclave process. These panels have stiffeners in the length-wise and width-wise directions but contain no fasteners because all stiffeners are stitched to the panel skin. This document contains a description of the fabrication of panels for use in the 30-foot-long Multi-Bay Box test article to be evaluated at NASA LaRC. The document also describes a panel which explores new PRSEUS concepts for applications beyond the Multi-Bay Box

    Lightning Arc Channel Effects on Surface Damage Development on a PRSEUS Composite Panel: An Experimental Study

    No full text
    Composite aircraft structures are vulnerable to lightning strike damage due to their relatively low electrical and thermal conductivities. A preceding work has investigated the lightning damage resistance of a carbon-epoxy Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panel. The damage includes intense local damage (i.e., matrix decomposition/sublimation, fiber rupture, delamination) accompanied by widespread surface damage (i.e., distributed fiber rupture and tow splitting) further from the lightning attachment point. This study focuses on investigating the cause of the widespread surface damage. Two possible driving mechanisms are explored: i) magnetically-induced currents and ii) lightning arc-root/channel expansion. Fifteen laboratory-scale lightning strike tests at nominal peak currents of 50–125 kA were performed on modified PRSEUS mid-bay locations. The surface modifications were placed adjacent to or enclosing the intended lightning arc attachment point, including through-slots, a non-conductive silicon-filled slot, insulating tape, and acrylic plates. The objective is to examine the effect of such barriers on lightning-induced surface damage for cases where the anisotropic lightning arc-root/channel expansion and/or the lightning arc primary current are constrained by the barriers, without affecting the magnetically-induced currents. In each of the lightning strike tests, both the intense local damage and widespread surface damage were limited by or enclosed within the insulating boundary. The placement of these boundaries altered the lightning arc-channel expansion or limited the interaction between the expanding-arc and the surface of the PRSEUS panel. These experiments demonstrate that the widespread surface damage outside of the attachment point primarily results from lightning arc-root/channel expansion rather than magnetically induced currents

    A Review of Transcranial Magnetic Stimulation and Multimodal Neuroimaging to Characterize Post-Stroke Neuroplasticity

    No full text

    Health-status outcomes with invasive or conservative care in coronary disease

    No full text
    BACKGROUND In the ISCHEMIA trial, an invasive strategy with angiographic assessment and revascularization did not reduce clinical events among patients with stable ischemic heart disease and moderate or severe ischemia. A secondary objective of the trial was to assess angina-related health status among these patients. METHODS We assessed angina-related symptoms, function, and quality of life with the Seattle Angina Questionnaire (SAQ) at randomization, at months 1.5, 3, and 6, and every 6 months thereafter in participants who had been randomly assigned to an invasive treatment strategy (2295 participants) or a conservative strategy (2322). Mixed-effects cumulative probability models within a Bayesian framework were used to estimate differences between the treatment groups. The primary outcome of this health-status analysis was the SAQ summary score (scores range from 0 to 100, with higher scores indicating better health status). All analyses were performed in the overall population and according to baseline angina frequency. RESULTS At baseline, 35% of patients reported having no angina in the previous month. SAQ summary scores increased in both treatment groups, with increases at 3, 12, and 36 months that were 4.1 points (95% credible interval, 3.2 to 5.0), 4.2 points (95% credible interval, 3.3 to 5.1), and 2.9 points (95% credible interval, 2.2 to 3.7) higher with the invasive strategy than with the conservative strategy. Differences were larger among participants who had more frequent angina at baseline (8.5 vs. 0.1 points at 3 months and 5.3 vs. 1.2 points at 36 months among participants with daily or weekly angina as compared with no angina). CONCLUSIONS In the overall trial population with moderate or severe ischemia, which included 35% of participants without angina at baseline, patients randomly assigned to the invasive strategy had greater improvement in angina-related health status than those assigned to the conservative strategy. The modest mean differences favoring the invasive strategy in the overall group reflected minimal differences among asymptomatic patients and larger differences among patients who had had angina at baseline
    corecore