27 research outputs found

    Cytochrome P450 2C19 Poor Metabolizer Phenotype in Treatment Resistant Depression: Treatment and Diagnostic Implications

    Get PDF
    Background: Pharmacogenomic testing, specifically for pharmacokinetic (PK) and pharmacodynamic (PD) genetic variation, may contribute to a better understanding of baseline genetic differences in patients seeking treatment for depression, which may further impact clinical antidepressant treatment recommendations. This study evaluated PK and PD genetic variation and the clinical use of such testing in treatment seeking patients with bipolar disorder (BP) and major depressive disorder (MDD) and history of multiple drug failures/treatment resistance.Methods: Consecutive depressed patients evaluated at the Mayo Clinic Depression Center over a 10-year study time frame (2003–2013) were included in this retrospective analysis. Diagnoses of BP or MDD were confirmed using a semi-structured diagnostic interview. Clinical rating scales included the Hamilton Rating Scale for Depression (HRSD24), Generalized Anxiety Disorder 7-item scale (GAD-7), Patient Health Questionnaire-9 (PHQ-9), and Adverse Childhood Experiences (ACE) Questionnaire. Clinically selected patients underwent genotyping of cytochrome P450 CYP2D6/CYP2C19 and the serotonin transporter SLC6A4. PK and PD differences and whether clinicians incorporated test results in providing recommendations were compared between the two patient groups.Results: Of the 1795 patients, 167/523 (31.9%) with BP and 446/1272 (35.1%) with MDD were genotyped. Genotyped patients had significantly higher self-report measures of depression and anxiety compared to non-genotyped patients. There were significantly more CYP2C19 poor metabolizer (PM) phenotypes in BP (9.3%) vs. MDD patients (1.7%, p = 0.003); among participants with an S-allele, the rate of CYP2C19 PM phenotype was even higher in the BP (9.8%) vs. MDD (0.6%, p = 0.003). There was a significant difference in the distribution of SLC6A4 genotypes between BP (l/l = 28.1%, s/l = 59.3%, s/s = 12.6%) and MDD (l/l = 31.4%, s/l = 46.1%, s/s = 22.7%) patients (p < 0.01).Conclusion: There may be underlying pharmacogenomic differences in treatment seeking depressed patients that potentially have impact on serum levels of CYP2C19 metabolized antidepressants (i.e., citalopram / escitalopram) contributing to rates of efficacy vs. side effect burden with additional potential risk of antidepressant response vs. induced mania. The evidence for utilizing pharmacogenomics-guided therapy in MDD and BP is still developing with a much needed focus on drug safety, side effect burden, and treatment adherence

    Characterisation of age and polarity at onset in bipolar disorder

    Get PDF
    Background Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. Aims To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. Method Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. Results Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. Conclusions AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses

    A Review of Epigenetics of PTSD in Comorbid Psychiatric Conditions

    No full text
    Post-traumatic stress disorder (PTSD) is an acquired psychiatric disorder with functionally impairing physiological and psychological symptoms following a traumatic exposure. Genetic, epigenetic, and environmental factors act together to determine both an individual’s susceptibility to PTSD and its clinical phenotype. In this literature review, we briefly review the candidate genes that have been implicated in the development and severity of the PTSD phenotype. We discuss the importance of the epigenetic regulation of these candidate genes. We review the general epigenetic mechanisms that are currently understood, with examples of each in the PTSD phenotype. Our focus then turns to studies that have examined PTSD in the context of comorbid psychiatric disorders or associated social and behavioral stressors. We examine the epigenetic variation in cases or models of PTSD with comorbid depressive disorders, anxiety disorders, psychotic disorders, and substance use disorders. We reviewed the literature that has explored epigenetic regulation in PTSD in adverse childhood experiences and suicide phenotypes. Finally, we review some of the information available from studies of the transgenerational transmission of epigenetic variation in maternal cases of PTSD. We discuss areas pertinent for future study to further elucidate the complex interactions between epigenetic modifications and this complex psychiatric disorder

    L-methionine Decreases Dendritic Spine Density in Mouse Frontal Cortex

    No full text
    Schizophrenia postmortem brain is characterized by γ aminobutyric acid downregulation and by decreased dendritic spine density in frontal cortex. Protracted L-methionine treatment exacerbates schizophrenia symptoms, and our earlier work (Tremolizzo et al. and Dong et al.) has shown that L-methionine decreases reelin and GAD67 transcription in mice which is prevented by co-administration of valproate. In this study, we observed a decrease in spine density following L-methionine treatment, which was prevented by co-administration of valproate. Together with our earlier findings conducted under the same experimental conditions, we suggest that downregulation of spine density in L-methionine-treated mice may be because of the decreased expression of reelin and that valproate may prevent spine downregulation by inhibiting the methylation induced decrease in reelin

    The Relationship between DNA Methylation and Antidepressant Medications: A Systematic Review

    No full text
    Major depressive disorder (MDD) is the leading cause of disability worldwide and is associated with high rates of suicide and medical comorbidities. Current antidepressant medications are suboptimal, as most MDD patients fail to achieve complete remission from symptoms. At present, clinicians are unable to predict which antidepressant is most effective for a particular patient, exposing patients to multiple medication trials and side effects. Since MDD’s etiology includes interactions between genes and environment, the epigenome is of interest for predictive utility and treatment monitoring. Epigenetic mechanisms of antidepressant medications are incompletely understood. Differences in epigenetic profiles may impact treatment response. A systematic literature search yielded 24 studies reporting the interaction between antidepressants and eight genes (BDNF, MAOA, SLC6A2, SLC6A4, HTR1A, HTR1B, IL6, IL11) and whole genome methylation. Methylation of certain sites within BDNF, SLC6A4, HTR1A, HTR1B, IL11, and the whole genome was predictive of antidepressant response. Comparing DNA methylation in patients during depressive episodes, during treatment, in remission, and after antidepressant cessation would help clarify the influence of antidepressant medications on DNA methylation. Individuals’ unique methylation profiles may be used clinically for personalization of antidepressant choice in the future
    corecore