141 research outputs found

    Cyclostationary Processes on Shape Spaces for Gait-Based Recognition

    Get PDF
    Abstract. We present a geometric and statistical approach to gaitbased human recognition. The novelty here is to consider observations of gait, considered as planar silhouettes, to be cyclostationary processes on a shape space of simple closed curves. Consequently, gait analysis reduces to quantifying differences between underlying stochastic processes using their observations. Individual shapes can be compared using geodesic lengths, but the comparison of gait cycles requires tools for extraction, interpolation, registration, and averaging of individual gait cycles before comparisons. The main steps in our approach are: (i) off-line extraction of human silhouettes from IR video data, (ii) use of piecewise-geodesic paths, connecting the observed shapes, to smoothly interpolate between them, (iii) computation of an average gait cycle within class (i.e. associated with a person) using Karcher means, (iv) registration of average cycles using linear and nonlinear time scaling, (iv) comparisons of average cycles using geodesic lengths between the corresponding shapes. We illustrate this approach on gait sequence obtained from infrared video clips. Experimental results are presented for a data set of 26 subjects.

    Use of Quadrupolar Nuclei for Quantum Information processing by Nuclear Magnetic Resonance: Implementation of a Quantum Algorithm

    Get PDF
    Physical implementation of Quantum Information Processing (QIP) by liquid-state Nuclear Magnetic Resonance (NMR), using weakly coupled spin-1/2 nuclei of a molecule, is well established. Nuclei with spin>>1/2 oriented in liquid crystalline matrices is another possibility. Such systems have multiple qubits per nuclei and large quadrupolar couplings resulting in well separated lines in the spectrum. So far, creation of pseudopure states and logic gates have been demonstrated in such systems using transition selective radio-frequency pulses. In this paper we report two novel developments. First, we implement a quantum algorithm which needs coherent superposition of states. Second, we use evolution under quadrupolar coupling to implement multi qubit gates. We implement Deutsch-Jozsa algorithm on a spin-3/2 (2 qubit) system. The controlled-not operation needed to implement this algorithm has been implemented here by evolution under the quadrupolar Hamiltonian. This method has been implemented for the first time in quadrupolar systems. Since the quadrupolar coupling is several orders of magnitude greater than the coupling in weakly coupled spin-1/2 nuclei, the gate time decreases, increasing the clock speed of the quantum computer.Comment: 16 pages, 3 figure

    Mesons and baryons in a soft-wall holographic approach

    Full text link
    We discuss a holographic soft-wall model developed for the description of mesons and baryons with adjustable quantum numbers n, J, L, S. This approach is based on an action which describes hadrons with broken conformal invariance and which incorporates confinement through the presence of a background dilaton field.Comment: 6 pages, Presented by Valery E. Lyubovitskij at LIGHTCONE 2011, 23 - 27 May, 2011, Dalla

    On the covariant quantization of tensionless bosonic strings in AdS spacetime

    Get PDF
    The covariant quantization of the tensionless free bosonic (open and closed) strings in AdS spaces is obtained. This is done by representing the AdS space as an hyperboloid in a flat auxiliary space and by studying the resulting string constrained hamiltonian system in the tensionless limit. It turns out that the constraint algebra simplifies in the tensionless case in such a way that the closed BRST quantization can be formulated and the theory admits then an explicit covariant quantization scheme. This holds for any value of the dimension of the AdS space.Comment: 1+16 pages; v4 two clarifications adde

    Real-time nonequilibrium dynamics in hot QED plasmas: dynamical renormalization group approach

    Get PDF
    We study the real-time nonequilibrium dynamics in hot QED plasmas implementing a dynamical renormalization group and using the hard thermal loop (HTL) approximation. The focus is on the study of the relaxation of gauge and fermionic mean fields and on the quantum kinetics of the photon and fermion distribution functions. For semihard photons of momentum eT << k << T we find to leading order in the HTL that the gauge mean field relaxes in time with a power law as a result of infrared enhancement of the spectral density near the Landau damping threshold. The dynamical renormalization group reveals the emergence of detailed balance for microscopic time scales larger than 1/k while the rates are still varying with time. The quantum kinetic equation for the photon distribution function allows us to study photon production from a thermalized quark-gluon plasma (QGP) by off-shell effects. We find that for a QGP at temperature T ~ 200 MeV and of lifetime 10 < t < 50 fm/c the hard (k ~ T) photon production from off-shell bremsstrahlung (q -> q \gamma and \bar{q} -> \bar{q}\gamma) at O(\alpha) grows logarithmically in time and is comparable to that produced from on-shell Compton scattering and pair annihilation at O(\alpha \alpha_s). Fermion mean fields relax as e^{-\alpha T t ln(\omega_P t)} with \omega_P=eT/3 the plasma frequency, as a consequence of the emission and absorption of soft magnetic photons. A quantum kinetic equation for hard fermions is obtained directly in real time from a field theoretical approach improved by the dynamical renormalization group. The collision kernel is time-dependent and infrared finite.Comment: RevTeX, 46 pages, including 5 EPS figures, published versio

    Anomalous Kinetics of Hard Charged Particles: Dynamical Renormalization Group Resummation

    Get PDF
    We study the kinetics of the distribution function for charged particles of hard momentum in scalar QED. The goal is to understand the effects of infrared divergences associated with the exchange of quasistatic magnetic photons in the relaxation of the distribution function. We begin by obtaining a kinetic transport equation for the distribution function for hard charged scalars in a perturbative expansion that includes hard thermal loop resummation. Solving this transport equation, the infrared divergences arising from absorption and emission of soft quasi-static magnetic photons are manifest in logarithmic secular terms. We then implement the dynamical renormalization group resummation of these secular terms in the relaxation time approximation. The distribution function (in the linearized regime) is found to approach equilibrium as δnk(t)=δnk(to)e2αT(tto)ln[(tto)μˉ]\delta n_k(t) =\delta n_k(t_o) e^{-2\alpha T (t-t_o) \ln[(t-t_o)\bar{\mu}]}, with μˉωp\bar{\mu}\approx \omega_p the plasma frequency and α=e2/4π\alpha =e^2/4\pi. This anomalous relaxation is recognized to be the square of the relaxation of the single particle propagator, providing a generalization of the usual relation between the damping and the interaction rate. The renormalization group approach to kinetics reveals clearly the time scale trel(αTln[1/α])1t_{rel} \approx (\alpha T \ln[1/\alpha])^{-1} arising from infrared physics and hinges upon the separation of scales trel>>ωp1t_{rel} >>\omega_p^{-1}.Comment: 16 pages, no figure

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
    corecore