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1. Introduction

The tensionless limit of string theory is as important to be understood as the field theory

of massless particle excitations is. That’s because, as in field theory the most useful and

beautiful symmetries, namely gauge symmetries, are typical of massless particles field the-

ories, we expect higher bigger symmetries and nicer quantum properties to appear in the

tensionless limit of string theory too [1].

As far as the flat background space is concerned, one finds in fact more than just new

gauge symmetries. In [2] the disappearance of the very concept of the critical dimension

was noticed.1 That result made clear that the need of fully solving the Liouville theory

to analyze the strings in arbitrary space-time dimension [4] is specific and peculiar of the

tensile string. This happens since in the tensionless limit the conformal anomaly itself gets

scaled away. The link between the tensionless limit of string theory in flat background and

higher spin field theories was also explored in [5]. Moreover, in [6], the arising of a new

infinite symmetry has been explicitly obtained and the tensionless limit of the interacting

second quantized string was analyzed.

In this notes we start studying the problem of the tensionless limit of strings on the

simplest negatively curved spaces, namely AdS spaces. Let us notice that, since the expan-

sion of the string on curved backgrounds has been mostly studied in the point-like regime

α′ → 0, we are facing an almost unexplored subject2 and the existing expansion methods

are therefore useless in the α′ →∞ limit.

1Let us recall also the papers [3] where a similar, but still less systematic, approach was sketched.
2The approach we take is different to the ”Null String”s one by Schild [7] to which the expansion

technique developed first in [8] applies. The basic difference is that in the ”Null String” approach one takes

the tensionless limit at fixed σ-model variables, while we keep fixed the string oscillator variables in order

to have an a priori control on the mass spectrum.
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Our approach is quite simple and maybe elementary. It follows by considering the

AdS space an hyperboloid in an higher dimensional flat auxiliary space. In such a picture

we implement the restriction to the hyperboloid as a lagrangean constraint to the free

theory in the ambient space. The natural set-up for the analysis of such a problem turns

out then to be the constrained hamiltonian formalism.3 It turns out that the constraint

algebra structure simplifies in the massless/tensionless case in such a way that the arising

of a larger gauge symmetry takes place. More specifically, it happens that the geometric

constraints are second class for generic values of the tension parameter, but in the mass-

less/tensionless regime it is possible to single out one half of them which, together with

the reparametrization/Virasoro generators, are first class. This property opens the way to

a well defined BRST covariant quantization of the system which we develop here in detail.

In few words, the main point is that massless free excitations on AdS can not probe

the strength of the space-time curvature and therefore, in this case, the assignment of the

value of a finite AdS radius should be regarded as a gauge choice (the assignment of a

zero radius being a degenerate gauge fixing condition). Let us underline again that this

property is special of massless/tensionless excitations on AdS space-time.

Let us notice that such a phenomenon is linked to the very definition of the masslessness

itself in AdS space (see [11]) and could be rephrased, from the second quantized point of

view, by analyzing the theory in terms of higher spin fields. In such terms, it should

correspond to the phenomenon noticed in [12], i.e. special slope values at which extra

gauge degrees of freedom arise in higher spin field theories.

Our main result is then a covariant quantization scheme for tensionless strings in AdS

where no restriction to the space-time dimension appears in the form of a critical dimension,

the constraint algebra being a Lie algebra without any non trivial central extensions.

In the following first warm up section 2, we will treat the easy case of the scalar

free massless particle in AdS in order to clearly explain the relevant procedure. In the

subsequent section 3 we study the tensionless limit of the free open and closed bosonic

string in AdS space by extending the method to such a more interesting cases. A final

section 4 points out some open questions and possible further developments for the second

quantized tensionless string theory on AdS background as a theory of interacting higher

spin fields and AdS/CFT at null CFT coupling.

2. Free spinless bosonic massless particles in AdS

Let us model the dimension d AdS space as an hyperboloid in a flat d + 1 dimensional

space. Labeling the coordinates in Rd+1 as xµ, as µ = 0, . . . , d, the embedding equation is

simply

xµηµνx
ν = −x2

0 + x2
1 + · · ·+ x2

d−1 − x2
d = R2

which defines the quadratic form η. We will usually write x2 for xµηµνx
ν and uv = uµηµνv

ν

for various (co)vectors.

3The covariant quantization of the bosonic string in flat spacetime was originally obtained in [9]. For a

review of string theory in flat space as a constrained hamiltonian system, see [10].
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The system of a spinless bosonic massless particles in AdS is most symmetrically de-

scribed in the hamiltonian formalism. Actually we can study it as a constrained hamilto-

nian system of a free massless bosonic particle in Rd+1 constrained to the AdS hyperboloid

of dimension d. The natural set of constraints (which follow from the Dirac consistency

procedure applied to the massive free particle with lagrangean constraint x2 = R2 and by

the subsequent zero mass limit and the removal of the Lagrange multiplier) are

p2 = 0 , x2 −R2 = 0 and xp = 0 (2.1)

which, together with a further non-singular gauge choice — for example a light cone gauge

vx = τ , with τ the hamiltonian time coordinate — give a good hamiltonian formulation

of the system, i.e. form a non degenerate set of constraints. Differently from the massive

case, we can single out from the above set a smaller one of first class constraints, namely

p2 = 0 and xp = 0 whose Poisson bracket algebra is closed. This shows that the spinless

massless free particle on AdS is aware of being on a constant negatively curved space, but

is not able to feel the strength of such a curvature. Put in another way, the assignment of

the AdS radius can be viewed as a gauge fixing condition for the system.

As far as the quantization is concerned, we promote the canonical pair (xµ, pµ) to

operators obeying the Heisenberg algebra [xµ, pν ] = iδµν as well as the constraint functions

to the hermitean operators p2 and 1
2(xp+ px). Notice that the first class constraint alge-

bra still closes, namely4 [p2, 1
2(xp + px)] = −i2p2. This enables us to perform the Dirac

quantization of the dynamical system, that is to formulate the consistent wave equation

system

p2ψ = 0 and
1

2
(xp+ px)ψ = 0 . (2.2)

Choosing hyperbolic polar coordinates in Rd+1 one can solve the radial dependence of the

wave function by the second of eqs. (2.2) and stay with a single resulting wave equations

in AdS intrinsic coordinates. This fixes unambiguously the scalar massless field curvature

coupling in AdS.

There are in fact several possible generalizations of the above constraint algebra (for

example one can add the coupling with a constant curvature bulk electromagnetic field)

and these could be interesting constrained dynamical systems to study.

It is also possible rephrase the quantization procedure at a BRST level. This is done by

introducing the independent anticommuting ghost real pairs (c, b) and (c′, b′) and encoding

the constraint algebra in the BRST charge

Q =
1

2
cp2 + c′

[

1

2
(xp+ px)− i(cb− bc)

]

obeying Q2 = 0 ,

where the antisymmetric ordering for the real ghosts has been applied. The anti-hermitean

4Notice that if a mass term would be added as p2 → p2 +m2 then such a property would not be true

anymore and a more elaborate scheme, from the point of view of the constrained system analysis, should

be applied.
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ghost number operator is G = 1
2 [c, b] +

1
2 [c
′, b′] and is such that [G,Q] = Q. The BRST

state cohomology KerQ/ImQ can be easily calculated to reproduce5 eq. (2.2).

3. Tensionless bosonic free strings in AdS

After the previous warm up section, let us now enter the main subject of the present note,

namely the tensionless limit of free bosonic strings in AdS space. We will follow the same

strategy developed in the previous section for the spinless scalar particle and generalize it

to open and closed free bosonic strings.

3.1 Open strings

3.1.1 The constraint algebra

In this subsection we analyze the constrained system of open strings in Rd+1 bound to stay

on the hyperboloid x2 = R2 in the tensionless limit. The study of this system amounts to

the extraction of the leading order terms in α′ out of the Virasoro constraints

1

2

[

2πα′P 2 +
1

2πα′
(X ′)2

]

and X ′P (3.1)

and the geometric constraints6

1

α′
(

X2 −R2
)

and XP . (3.2)

Then, following the method explained in the previous section, we have to select out of the

geometric constraints a subset such that, together with the contracted Virasoro constraints,

one gets a closed algebra under commutation so that one is left with first class constraints

only and a BRST quantization procedure is available. Let us notice that such a procedure

was available for massless particles only on AdS and is respectively available for the ten-

sionless strings only in AdS (while it is not for the tensile case when the subleading terms

have to be kept). Moreover, since first class constraints weight twice — in the degrees

of freedom counting — than second class ones (see for a review [13]), to get the correct

degrees of freedom counting, the subset of constraints that we have to single out has to

contain one half of the original geometric ones.

Before proceeding, let us now just fix some notation. The system is given by the string

center of mass variables (xµ, p
µ) and the infinite set of oscillators (anµ, a

∗
nµ), with n > 0.

They satisfy the usual canonical commutation relations (CCRs)

[xµ, p
ν ] = iδνµ , [anµ, a

∗
mν ] = ηµνδnm (3.3)

5Assuming standard partial invertibility for the relevant operators which generalizes the usual ones

holding for the free massless relativistic particle in flat space.
6These can be shown to follow from the Dirac consistency procedure applied to the string lagrangian

in Rd+1 augmented by the lagrangian constraint X2 − R2 = 0. The Lagrange multiplier is already gauge

fixed.
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and the other commutators are vanishing. The string coordinate and its conjugate mo-

mentum are (σ ∈ [0, π])

Xµ(σ) = xµ +
∑

n>0

√

2α′

n

(

anµ + a∗nµ
)

cos(nσ) ,

P µ(σ) =
pµ

π
+

1

iπ

∑

n>0

√

n

2α′
(

anµ − a∗nµ
)

cos(nσ).

Let us notice that we define the string expansion in the flat auxiliary space as the free

string expansion. This is the only correct possibility once we required that the tension

parameter enters the oscillator expansion of the string canonical variables independently

on the further constraints fixing the curved space the string will be constrained on, that is

independently on the geometric constraints.

The extraction of the leading order from the Virasoro constraints (3.1) is exactly equal

to the calculation in the flat space (see [2, 6]), i.e. we have (after rescaling)

L0 = p2 , Ln = p · an and L∗n = p · a∗n .

A choice of one half constraints out of the geometrical ones (3.2) is to select the

zeromode part of XP and the oscillating modes of 1
α′

(

X2 −R2
)

, that is

D0 =

∫ π

0
dσ : XP : (σ) =

1

2
(xp+ px) +

1

2i

∑

n>0

(

a2
n − a∗2n

)

and the leading order coefficients in the Fourier expansion of 1
α′

:XX ′ : (σ)=
∑

p>0 sin(pσ)×
(Dp + o(1/

√
α′)), namely

Dp =
∑

n>0

(

√

p+ n

n
−
√

n

p+ n

)

(

ap+nan + a∗p+nan + a∗nap+n + a∗p+na
∗
n

)

+

+

p−1
∑

m=1

√

m

p−m
(

amap−m + a∗p−mam + a∗map−m + a∗p−ma
∗
m

)

,

where p runs over the positive integers (and the second sum is not there for p = 1). Notice

that D0 and Dp are hermitean. The left over constraints, i.e. the leading terms in the zero

mode part of 1
α′

(

X2 −R2
)

and in the oscillatory part of XP , can therefore be regarded as

gauge fixing conditions.

To prove that the above choice of constraints is first class, we have to exhibit the

closure of the constraint algebra generated by the Ls and the Ds. The algebra can be

checked to be given by

[L0, D0] = −2iL0 , [L0, Dp] = 0 , [Ln, D0] = −i(Ln − L∗n) , (3.4)

[Ln, Dp] =

(

√

p+ n

n
−
√

n

p+ n

)

(Lp+n + L∗p+n) + ζn,p((L|p−n| + L∗|p−n|) , (3.5)

– 5 –
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where ζn,p = p√
n|n−p|

if p 6= n and ζp,p = 0. Moreover7 we have

[D0, Dp] = −2

(

Dp −
d+ 1

2
(1 + (−1)p)

)

and [Dp, Dq] = 0 . (3.6)

Notice that quantum mechanically one has to consider the operator Dp to be defined up

to an additional constant due to normal ordering ambiguity. This can be added to cancel

the c-number term appearing in the first commutator in (3.6). We will fix the actual value

of such a quantity together with the proper ghost contribution by building a nilpotent

quantum BRST charge for the system under consideration.

3.1.2 The quantum BRST charge

In order to build the BRST charge of the system, we introduce the relative anticommut-

ing ghosts cn, c
∗
n and c0 and the anti-ghosts bn, b

∗
n and b0 (normalized by [c0, b0]+ = 1,

[cm, b
∗
n]+ = δmn, [c

∗
n, bm]+ = δnm and other anti-commutators vanishing) for the contracted

Virasoro constraints Ln, L
∗
n and L0 as well as the hermitean ghosts c′p and c′0 and the

relative hermitean anti-ghosts b′p and b′0 (normalized by [c′0, b
′
0]+ = 1, [c′n, b

′
m]+ = δnm and

other anti-commutators vanishing) for the contracted geometrical embedding constraints

Dp and D0. The ordering prescription that we keep for hermitean ghosts is the usual

anti-symmetrization.

As it results from [2, 6], the BRST charge corresponding to the tensionless open string

constraints in Rd+1 is given by

Qopen,Rd+1 =
1

2
c0L0 +

∑

n>0

[L∗ncn + c∗nLn − 2c∗ncnb0]

and keeps into account the contracted Virasoro constraints only. The full BRST charge

implementing the above full constrained system is obtained then by adding the geometric

constraints as an improvement. The way we find natural to proceed is to notice that, since

the algebra (3.4)–(3.5) is of the form [L,D] = L, then the geometric constraints D’s can

be promoted to operators commuting with Qopen,Rd+1 by adding suitable (bc) ghost terms.

Let us therefore introduce the following invariant bilinear combinations

l(mn) = am · an − cmbn − cnbm l∗(mn) = a∗m · a∗n + c∗mb
∗
n + c∗nb

∗
m (3.7)

hmn = a∗m · an + c∗mbn + b∗mcn +
d− 1

2
δmn (3.8)

and8 let us define the ghost completition of the contracted geometric constraints as

∆0 =
1

2
(xp+ px)− i[c0, b0] + i

∑

m>0

(b∗mcm − c∗mbm) +
1

2i

∑

n>0

(

l(nn) − l∗(nn)

)

7To obtain the following commutation relations the reader might start from the commutation relations

[

XX
′(σ), XX

′(σ′)
]

= 0 and

[
∫

PX,XX
′(σ)

]

= −2XX
′(σ) ,

pass to the normal ordered expressions and then consider the leading order terms.
8The above family of quadratic combinations close to form the following sp(∞) algebra

[l(mn), l(pq)] = 0 [l(mn), hpq] = δnpl(mq) + δmpl(nq) (3.9)

– 6 –
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and

∆p =

p−1
∑

n=1

√

p− n
n

(

l(n,p−n) + l∗(n,p−n) + hn,p−n + hp−n,n
)

+

+
∑

n>0

(

√

p+ n

n
−
√

n

p+ n

)

(

l(n,p+n) + l∗(n,p+n) + hn,p+n + hp+n,n

)

.

The commutation algebra satisfied by the above operators is

[∆0,∆p] = −2∆p and [∆p,∆q] = 0 . (3.13)

We have now a clear synthetic framework to obtain the full quantum BRST charge

Qopen,AdS = Qopen,Rd+1 + c′0∆0 +
∑

p>0

c′p∆p + c′0
∑

p>0

[c′p, b
′
p] .

Notice that since the ghost completed geometrical constraints ∆s commute with the un-

constrained BRST charge Qopen,Rd+1 and fulfill the algebra (3.13) we have

Q2
open,AdS = 0

irrespectively to the value of the space-time dimension. This shows that, as in the flat case,

also on AdS space the whole conformal anomaly scales away and the problem of critical

dimension does not exist anymore in the tensionless limit.

Moreover, since the expressions we started from were invariant under the AdS rota-

tional group SO(2, d− 1), also the tensionless limit is. More concretely, one can check that

the SO(2, d − 1) generators

Jµν =
1

2
(xµpν − xνpµ)−

i

2

∑

n>0

(a∗nµanν − a∗nνanµ) (3.14)

are such that [Jµν ,Qopen,AdS ] = 0.

3.2 Closed strings

In order to treat the closed string case, we follow a procedure analogous to the one we

developed in the open string case. Let us expand the σ-model canonical coordinates in

oscillators, that is (now σ ∈ [0, 2π])

Xµ(σ) = xµ +
∑

n>0

√

α′

2n

(

aµne
−inσ + āµne

inσ + h.c.
)

P µ(σ) =
pµ

2π
+

1

2π

∑

n>0

√

n

2α′
(

−iaµne−inσ − iāµneinσ + h.c.
)

,

[hmn, hpq ] = δnphmq − δmqhpn (3.10)

[l∗(mn), l
∗
(pq)] = 0 [l∗(mn), hpq] = −δnq l

∗
(mp) − δmq l

∗
(np) (3.11)

[l(mn), l
∗
(pq)] = hqmδnp + hpmδnq + hqnδmp + hpnδmq (3.12)

which is useful to check the algebraic calculations. Notice that all these bilinears commute with the

unconstrained BRST charge Qopen,Rd+1 .

– 7 –
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where the above modes satisfy the CCRs

[xµ, pν ] = iηµν [aµn, (a
∗)νm] = ηµνδnm [āµn, (ā

∗)νm] = ηµνδnm (3.15)

and the other commutators vanishing.

Calculating the Virasoro constraints and performing the leading order terms extraction

as we did in the open string case, we find that the left over constraints for the tensionless

closed string are

p2 , Ln = p · an , L∗n = p · a∗n ,
L̄n = p · ān , L̄∗n = p · ā∗n , N − N̄ =

∑

n>0

n (a∗n · an − ā∗n · ān) = 0 ,

the last one being the usual level matching condition (and we don’t define any L0 = L̄0 = p2,

but we just keep denoting p2 not to cause extra confusion with the level matching and the

notation which makes sense within the tensile string usual notation).

As far as the geometric constraints

1

α′
(

X2 −R2
)

and XP

are concerned, one can work out easily their leading order factors in the tensionless limit

and, as in the open free string case, single out the oscillatory part of the first and the zero

mode part of the second, that is the leading order of 1
α′

: XX ′ : (σ) and
∮

: XP :.

Calculating the relevant Fourier modes and leading terms, we have 1
α′

: XX ′ : (σ) =
i
2

∑

p>0

(

Cpe
ipσ − C∗pe−ipσ

)

+ o
(

1√
α′

)

, where

Cp =

p−1
∑

m=1

√

m

p−m
(

āp−m + a∗p−m
)

· (ām + a∗m) +

+
∑

n>0

(

√

p+ n

n
−
√

n

p+ n

)

(an + ā∗n) ·
(

āp+n + a∗p+n
)

(3.16)

and

C0 =

∮

: XP :=
1

2
(xp+ px) + i

∑

n>0

(ā∗na
∗
n − ānan) .

Notice that C0 is hermitean, while Cp is conjugated to C∗p and viceversa. (We don’t

explicitly write the normal ordered expression for Cp since it coincides with the one we

gave above).

It is straightforward to verify that the algebra of the constraint functions closes to a

Lie algebra and that therefore the BRST quantization procedure can be developed as in

the open string case. This shows that also in the closed string case it is possible to single

out a subset of the geometrical constraints in order to present the constrained hamiltonian

system just in terms of first class constraints only. Specifically, the actual form of the

– 8 –
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constraint algebra is given by the following commutation relations

[Ln, L
∗
m] = p2δnm, [L̄n, L̄

∗
m] = p2δnm ,

[Ln, N − N̄ ] = nLn , [L̄n, N − N̄ ] = −nL̄n ,
[p2, C0] = −2ip2 , [Ln, C0] = −iLn + iL̄∗n , [L̄n, C0] = −iL̄n + iL∗n ,

[Ln, Cp] =

(

√

n

n− p −
√

n− p
n

)

(

Ln−p + L̄∗n−p
)

if n > p

[Ln, Cp] =

(

√

p− n
n

+

√

n

p− n

)

(

L̄p−n + L∗p−n
)

if n < p

[Lp, Cp] = 0 [L̄∗n, Cp] = [Ln, Cp]

[L̄n, Cp] = [L∗n, Cp] =

(

√

p+ n

n
−
√

n

p+ n

)

(

L̄n+p + L∗n+p

)

[C0, Cp] = −2Cp ,

the others being vanishing or can be obtained by hermitean conjugation of the above ones.

Notice that the above algebra is not a direct product of two copies of the open one. Here,

in fact, we see explicitly how the curvature of the background affects the left/right sectors

mixing (as it is expected to happen from a more general point of view).

Also the construction of the quantum BRST charge follows a path similar to the open

string case. Introducing the ghosts for the geometric constraints c′p, c
′
0 and (c′)∗p as well as

the conjugated anti-ghosts (b′)∗p, b
′
0 and b′p, the BRST charge can be built as

Qclosed,AdS = Qclosed,Rd+1 +
∑

p>0

(

(c′)∗pΓp +Γ∗pc
′
p

)

+ c′0Γ0 + [[b′c′c′]] , (3.17)

where

Qclosed,Rd+1 =
1

2
c0p

2 +
∑

n>0

(c∗npan + pa∗ncn + c̄∗npān + pā∗nc̄n) +

+ ĉ0
∑

n>0

n
(

a∗nan + c∗nbn + b∗ncn − ā∗nān − c̄∗nb̄n − b̄∗nc̄n
)

−

− 2b0
∑

n>0

n (c∗ncn + c̄∗nc̄n) ,

Γp = Cp + [ghosts] are the ghost completition of the constraints Cp such that [QclosedRd+1 ,

Γp] = 0 and still satisfy the internal algebra of the constraints, namely

[Γ0,Γp] = −2Γp , [Γ0,Γ
∗
p] = 2Γ∗p (3.18)

and the others vanishing. Finally, the term [[b′c′c′]] is built from the algebra (3.18) structure

constants and is equal to 2c′0
∑

p>0

(

(b′)∗pc
′
p + (c′)∗pb

′
p

)

.

Since the algebra (3.18) is fulfilled and the Γs commute with Qclosed,Rd+1 , then the

BRST charge (3.17) satisfies

Q2
closed,AdS = 0

identically.
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Notice moreover that all the constraints commute with the generators of the AdS

isometry group SO(2, d − 1), i.e. with

Jµν =
1

2
(pµxν − pνxµ) +

i

2

∑

n

(

a∗nµanν − a∗nνanµ + ā∗nµānν − ā∗nν ānµ
)

which therefore commute with the BRST charge too.

4. Conclusions and open questions

In this short note we have studied few basic properties of tensionless bosonic strings in

AdS space-time, namely the very existence of a covariant quantization scheme for such a

system. We found that the special simplification in the constraint algebra that takes place

in such a limit enables an explicitly covariant quantization scheme of the theory in any

spacetime dimension. Let us notice that the light-cone gauge fixed approach developed in

[14], although seemingly not rigorous, indirectly suggests such a result.9

In principle, the results that we obtained can be extended to any spacetime which can

be obtained as a quadric in a higher dimensional flat space, as dS space for example. The

physical difference between the positive and negatively curved space have to be understood

from the explicit calculation of the spectrum of the theories, that is from the calculation

of the BRST state cohomology whose structure naturally depends on the signature of the

defining quadratic form η.

The second quantization of the free tensionless string theories that we just developed

results in an infinite chain of higher spin theories on AdS (about this subject see [17]–

[21]). In such a general framework it is possible indeed to study also the interaction of

tensionless strings as already proposed in [6]. Actually, we can extend at some rate the

arguments about string fragmentation and world-sheet picture instability by [22] which

indicate that the first quantized interacting string gets literally undone in the tensionless

limit. This phenomenon has a clear analogous in QED which is the IR-catastrophe in

first quantization when finite energy amounts can be emitted in the form of an infinity

of soft photons. Notice that some caveat has to be raised here, since perturbative IR

fluctuations are typically dumped in negatively curved space-times [23] and therefore the

analogous of the analysis in [22] in AdS space should be carried out carefully possibly giving

a tendential dumping of the string fragmentation effect. Such an unclear picture promotes

the string field approach to be the natural framework to correctly formulate tensionless

strings interactions. In order to do this, one has to extend the usual string field theory

techniques to AdS to build the three string vertex [24, 25]. The value of the AdS radius

is expected to play a role in the interacting theory due to the deformation of the gauge

symmetry.

9Notice that a different approach to the tensionless string in AdS appeared also in [15]. That approach

is a limiting case of the construction carried out in [16] and is based on a coset WZNW realization of the

AdS σ-model which therefore implies the presence of a specific balancing background antisymmetric field.

It follows that such a approach refers to a different set up with respect to the one we have been considering

in this paper.
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The approach we developed could in fact be extended to superstring theories too

with results naturally much similar to the ones we have found for the bosonic case. In

particular one could consider the tensionless limit of type IIB string on AdS5 × S5 (which

can be easily described as a product of two quadrics in a twelve dimensional space) in

order to get some new inputs for AdS/CFT in the tensionless limit [26]–[28]. The second

quantization of the tensionless string theories that we obtained here could in fact shed

some light on that subject. Actually, to advance in such a direction one should study the

spectrum of the tensionless theory, that is (from our perspective) one has to solve for the

state cohomology of the BRST charge Qopen,AdS or Qclosed,AdS, and compare it with the

spectrum of conserved currents of a proper boundary theory. The actual calculation of the

BRST state cohomology is obviously the first development to be carried out. It is clear

that this will classify the physical states in terms of IURs of the AdS group with a spectrum

which we expect highly symmetric and irreducible to a deformation of the flat space string

spectrum, as the results in [19] already suggest.

These and other possible aspects of the tensionless limit of string theories are open

issues for further research.
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