10 research outputs found

    Lipidated Stapled Peptides Targeting the Acyl Binding Protein UNC119

    No full text
    The acyl-binding UNC119 proteins mediate the activation and transport of various N-myristoylated proteins. In particular, UNC119a plays a crucial role in the completion of cytokinesis. Herein, we report the use of a lipidated peptide originating from the UNC119 binding partner Gnat1 as the basis for the design of lipidated, stabilized α-helical peptides that target UNC119a. By using the hydrocarbon peptide-stapling approach, cell-permeable binders of UNC119a were generated that induced the accumulation of cytokinetic and binucleated cells; this suggests UNC119a as a potential target for the inhibition of cytokinesis

    Bicyclic β-sheet mimetics that target the transcriptional coactivator β‑catenin and inhibit Wnt signaling

    Get PDF
    Protein complexes are defined by the three-dimensional structure of participating binding partners. Knowledge about these structures can facilitate the design of peptidomimetics which have been applied e.g. as inhibitors of protein-protein interactions (PPIs). Even though β-sheets participate widely in PPIs, they have only rarely served as the basis for peptidomimetic PPI inhibitors, in particular when addressing intracellular targets. Here, we present the structure-based design of β-sheet mimetics targeting the intracellular protein β-catenin, a central component of the Wnt signaling pathway. Based on a protein binding partner of β-catenin, a macrocyclic peptide was designed and its crystal structure in complex with β-catenin obtained. Using this structure, we designed a library of bicyclic β-sheet mimetics employing a late-stage diversification strategy. Several mimetics were identified that compete with transcription factor binding to β-catenin and inhibit Wnt signaling in cells. The presented design strategy can support the development of inhibitors for other β-sheet-mediated PPIs

    Back Cover: Bicyclic β‐Sheet Mimetics that Target the Transcriptional Coactivator β‐Catenin and Inhibit Wnt Signaling (Angew. Chem. Int. Ed. 25/2021)

    No full text
    Protein complexes are defined by the three-dimensional structure of participating binding partners. Knowledge about these structures can facilitate the design of peptidomimetics which have been applied for example, as inhibitors of protein–protein interactions (PPIs). Even though β-sheets participate widely in PPIs, they have only rarely served as the basis for peptidomimetic PPI inhibitors, in particular when addressing intracellular targets. Here, we present the structure-based design of β-sheet mimetics targeting the intracellular protein β-catenin, a central component of the Wnt signaling pathway. Based on a protein binding partner of β-catenin, a macrocyclic peptide was designed and its crystal structure in complex with β-catenin obtained. Using this structure, we designed a library of bicyclic β-sheet mimetics employing a late-stage diversification strategy. Several mimetics were identified that compete with transcription factor binding to β-catenin and inhibit Wnt signaling in cells. The presented design strategy can support the development of inhibitors for other β-sheet-mediated PPIs

    Impaired Function of Solute Carrier Family 19 Leads to Low Folate Levels and Lipid Droplet Accumulation in Hepatocytes

    No full text
    Low serum folate levels are inversely related to metabolic associated fatty liver disease (MAFLD). The role of the folate transporter gene (SLC19A1) was assessed to clarify its involvement in lipid accumulation during the onset of MAFLD in humans and in liver cells by genomic, transcriptomic, and metabolomic techniques. Genotypes of 3 SNPs in a case-control cohort were initially correlated to clinical and serum MAFLD markers. Subsequently, the expression of 84 key genes in response to the loss of SLC19A1 was evaluated with the aid of an RT2 profiler-array. After shRNA-silencing of SLC19A1 in THLE2 cells, folate and lipid levels were measured by ELISA and staining techniques, respectively. In addition, up to 482 amino acids and lipid metabolites were semi-quantified in SLC19A1-knockdown (KD) cells through ultra-high-performance liquid chromatography coupled with mass spectrometry. SNPs, rs1051266 and rs3788200, were significantly associated with the development of fatty liver for the single-marker allelic test. The minor alleles of these SNPs were associated with a 0.6/−1.67-fold decreased risk of developing MAFLD. When SLC19A1 was KD in THLE2 cells, intracellular folate content was four times lower than in wild-type cells. The lack of functional SLC19A1 provoked significant changes in the regulation of genes associated with lipid droplet accumulation within the cell and the onset of NAFLD. Metabolomic analyses showed a highly altered profile, where most of the species that accumulated in SLC19A1-KD-cells belong to the chemical groups of triacylglycerols, diacylglycerols, polyunsaturated fatty acids, and long chain, highly unsaturated cholesterol esters. In conclusion, the lack of SLC19A1 gene expression in hepatocytes affects the regulation of key genes for normal liver function, reduces intracellular folate levels, and impairs lipid metabolism, which entails lipid droplet accumulation in hepatocytes

    Identification of a gene-pathway associated with non-alcoholic steatohepatitis

    No full text
    BACKGROUND/AIMS: We have integrated gene expression profiling of liver biopsies of NASH patients with liver samples of a mouse model of steatohepatitis (MAT1A-KO) to identify a gene-pathway associated with NASH. METHODS: Affymetrix U133 Plus 2.0 microarrays were used to evaluate nine patients with NASH, six patients with steatosis, and six control subjects; Affymetrix MOE430A microarrays were used to evaluate wild-type and MAT1A-KO mice at 15 days, 1, 3, 5 and 8 months after birth. Transcriptional profiles of patients with NASH and MAT1A-KO mice were compared with those of their proficient controls. RESULTS: We identified a gene-pathway associated with NASH, that accurately distinguishes between patients with early-stage NASH and controls. Patients with steatosis have a gene expression pattern intermediate between that of NASH and controls. Promoter analysis revealed that 34 of the genes associated with NASH contained an Sp1 element. We found that Sp1 binding to these genes is increased in MAT1A-KO mice. Sp1 is also hyperphosphorylated in MAT1A-KO as well as in patients with NASH and steatosis. CONCLUSIONS: A gene-pathway associated with NASH has been identified. We speculate that hyperphosphorylation of Sp1 may be involved in the genesis of steatosis and that other factors, such as oxidative stress, may trigger its progression to NASH

    Development of a Series of Pyrrolopyridone MAT2A Inhibitors

    No full text
    The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ’9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors

    Development of a Series of Pyrrolopyridone MAT2A Inhibitors

    No full text
    The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ’9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors
    corecore