322 research outputs found

    Monitorization of hexanal as lipid oxidation indicator in a processed meat product packaged with poly(lactic acid)/clay nanocomposite films

    Get PDF
    One of the most detrimental processes in fatty foodstuffs is lipid oxidation, which occurs during production and storage, and influences food composition and safety. Through the analysis of volatile lipid oxidation products we can have an insight into the oxidation, and some volatiles, such as hexanal, which can be markers of undergoing oxidation processes. Hexanal is formed when fatty acids are oxidized and is one of many well-documented aromatic components that contributes to flavour and aroma in common food products containing fatty acids. During the last decade, the interest in polymer layered silicate (PLS) nanocomposites has rapidly increased due to their potential for enhancing physical, chemical, and mechanical properties of conventional materials. Polymer nanocomposites are represented by a polymeric matrix reinforced with nanoscale fillers, among them the most common silicate clays are represented by montmorillonite (MMT), which is naturally occurring and readily available in large quantities. The presence of MMT can lead to materials which generally exhibit great property enhancements, mainly due to its intercalation or exfoliation into the polymer chains. In this work natural MMT Cloisite Na+ was incorporated in PLA. The PLA/Cloisite® Na+ films were prepared through a two-step process. In the first step, PLA pellets were fed into a corotating laboratory twin-screw extruder at 170 °C and 50 rpm for 2 min. Subsequently, Cloisite® Na+ powder (5%, w/w) were added and mixed. After extrusion, the melted matter was then pressed with a P300P hot press at 170 °C and 100 bar to obtain the PLA/Cloisite® Na+ films. Salami slices were packaged with PLA-OMMT film and with a control film (PLA). After different storage times (0, 15, 30, 60 and 90 days), salami slices were analysed regarding their hexanal content. The hexanal derivatization was performed in a solution of 2,4-dinitrophenylhydrazine in sulfuric acid during 4 h in the dark, and the hexanal extraction was performed with n-hexane and evaporation till dryness. The residue was dissolved in methanol, filtered and analysed. The quantification of hexanal was performed by Ultra High Performance Liquid Chromatography coupled with Diode Array Detector at 365 nm, with a Pre-column AcquityTM UPLC® BEH C18 (2.1 x 5 mm, 1.7 μm particle size) and a column AcquityTM UPLC® BEH C18 (2.1 × 50 mm, 1.7 μm particle size), the mobile-phase was acetonitrile-water (75:25, v/v). The amount of hexanal in packaged salami decreased in the first 60 days of storage. In this period of time the hexanal content of the salami packaged with the PLA/Cloisite® Na+ films was lower than the salami packaged with control film, except after 15 days of storage, where there was no difference between two films. After 90 days of storage, the amount of hexanal in the samples increased, although it was higher in the samples packaged with control film (94.7 ± 6.02 μg/100g salami) than salami packaged with PLA/Cloisite® Na+ films (65.1 ± 6.12 μg/100g salami). The presence of MMT in the polymer film can reduce the lipid oxidation of processed meat products, extending their shelf life. Further studies to evaluate differences between PLA and the nanocomposite (PLA-5%Cloisite®Na+) in what regards to the mechanical and barrier properties are in progress.This work was supported by the research project “Labelling and tracking of nanoclay from food packaging nanocomposites: a food safety issue – NanoPack4Food” (2014DAN1019) under the Cooperative Programme of the Agreement on Scientific Cooperation between National Research Council of Italy (CNR) and Foundation for Science and Technology of Portugal (FCT)N/

    Behaviour of piozoelectric devices embedded in bone cement

    Get PDF
    Bone cements based on polymethacrylate (PMMA) are essential products in joint arthroplasty. PMMA bone cement function is to locate the implants components in the body skeleton, load transition through the joint into the bone and muscle surrounding for a very for a very long period of time. Its mechanical properties are well established in the literature. Since bone cement fills the void between the prosthesis (polymer or metallic) and bone, it is subjected to high stress and has to operate in a relatively aggressive environment, like human body. Therefore, based on surrounding environment PMMA bone cements application, this material has specific mechanical properties that enhance a good performance in this condition. These stresses are mainly measured indirectly with non-invasive methods. In-situ measurements would be more interesting to really understand and quantify these stresses. Piezoelectric devices are an interesting way to measure forces in difficult accessibility environment, since they are self-power, i. e., they are able to generate an electric signal by converting mechanical energy into electrics with no need for power supply. When embedded in bone cement one expects to be able to analyze the health structure in real-time. Positioning of the sensing device is a critical factor worthy of a thorough study in order to understand its behavior to surroundings

    A novel hybrid material with calcium and strontium release capability

    Get PDF
    The preparation of PDMS–TEOS–CaO hybrid materials by sol–gel techniques has been widely described in previous works. Calcium nitrate is the most common source of calcium used in these preparations. However, to remove possible toxic nitrate by-products a thermal treatment is necessary at temperatures above 500 1C, which leads to the degradation of the polymeric components of the hybrids. Strontium has already shown some promising results in the therapeutic area, being used in cases of osteoporosis and low bone density. In this study a new potential bioactive hybrid material was prepared, by sol–gel techniques, using calcium acetate as a novel calcium source. Also, for the first time, incorporation of strontium in a PDMS–TEOS hybrid system was evaluated. Samples were characterized before and after immersion in Kokubo’s Simulated Body Fluid (SBF) by SEM, EDS, ICP and FT-IR spectroscopy

    Sweets and Jams

    Get PDF
    This manual aims to assist the Work Health and Safety Assessment Tool – Horticultural Products – Sweets and Jams user, in carrying out a simplified and easy-to-use occupational risk assessment with a view to adopting risk control solutions at workplaces. The design of this tool trie to provide an instrument capable of being used without internet access or specific software installation. In addition to its main purpose, this tool can also be used for workers consultation or training actions, provided as a complement of the other instruments developed within the scope of this project. The tool is organized in three distinct parts (see Figure 1): the first, where a checklist is filled out, from which a graphical overview is obtained, which will give the overview of the level of risk control (second part). This synthesis of results allows the user to immediately visualize the level of control of the main risks and in which will have to make major interventions. Finally, the third part appears, where a report is generated with solutions, particularized for each one of the risks in which the adoption of measures proves necessary.info:eu-repo/semantics/publishedVersio

    Neutron cross-sections for advanced nuclear systems : The n-TOF project at CERN

    Get PDF
    © Owned by the authors, published by EDP Sciences, 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n-TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.Peer reviewedFinal Published versio

    238U(n, γ) reaction cross section measurement with C 6D6 detectors at the n-TOF CERN facility

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,γ) cross section measurement performed at n-TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction.Peer reviewe

    Recent experimental results in sub- and near-barrier heavy ion fusion reactions

    Full text link
    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus will be mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations over-predict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ
    corecore