9 research outputs found

    Examining queue-jumping phenomenon in heterogeneous traffic stream at signalized intersection using UAV-based data

    Get PDF
    © 2020, Springer-Verlag London Ltd., part of Springer Nature. This research presents an in-depth microscopic analysis of heterogeneous and undisciplined traffic at the signalized intersection. Traffic data extracted from the video recorded using an unmanned aerial vehicle (UAV) at an approach of a signalized intersection is analyzed to study the within green time dynamics of traffic flow. Various parameters of Wiedemann 74, Wiedemann 99, and lateral behavior models used in microscopic traffic simulation package, Vissim, are calibrated for the local heterogeneous traffic. This research is aimed at exploring the queue-jumping phenomenon of motorbikes at signalized intersections and its impact on the saturation flow rate, travel time, and delay. The study of within green time flow dynamics shows that the flow of traffic within green time is not uniform. Surprisingly, the results indicate that the traffic flow for the first few seconds of the green time is significantly higher than the remaining period of green time, which shows a contradiction to the fact that traffic flow for the first few seconds is lower due to accelerating vehicles. Mode-wise traffic counted per second shows that this anomaly is attributed to the presence of motorbikes in front of the queue. Consequently, the outputs of simulation results obtained from calibrated Vissim show that the simulated travel time for motorbikes is significantly lower than the field-observed travel times even though the average simulated traffic flow matches accurately with the field-observed traffic flow. The findings of this research highlight the need to incorporate the queue-jumping behavior of motorbikes in the microsimulation packages to enhance their capability to model heterogeneous and undisciplined traffic

    Influence of geometric design characteristics on safety under heterogeneous traffic flow

    Get PDF
    This paper focuses on analysing the influence of geometric design characteristics on traffic safety using bi-directional data on a divided roadway operated under heterogeneous traffic conditions in India. The study was carried out on a four lane divided inter-city highway in plain and rolling terrain. Statistical modelling approach by Poisson regression and Negative binomial regression were used to assess the safety performance as occurrence of crashes are random events and to identify the influence of the geometric design variables on the crash frequency. Negative binomial regression model was found to be more suitable to identify the variables contributing to road crashes. The study enabled better understanding of the factors related to road geometrics that influence road crash frequency. The study also established that operating speed has a significant contribution to the total number of crashes. Negative binomial models are found to be appropriate to predict road crashes on divided roadways under heterogeneous traffic conditions

    Investigation on the panchromaticity of silver-doped poly(vinyl alcohol)/acrylamide photopolymer

    No full text
    An investigation on the panchromaticity of a silver-doped poly(vinyl alcohol)/acrylamide photopolymer system is presented in this paper. Frequency-doubled Nd:YAG (532 nm) and Arþ (488 nm) lasers were used for the characterization of the films. Previous studies using an He–Ne laser (632:8 nm) showed that plane-wave transmission grating with a high diffraction efficiency of 75% could be stored in the optimized film. From the present study, it was noted that transmission gratings with 70% diffraction efficiency could be recorded using Arþ and Nd:YAG lasers, thereby elucidating the possibility of using the developed photopolymer system as a competent panchromatic recording mediumCochin University of Science and TechnologyAPPLIED OPTICS / Vol. 50, No. 18 / 20 June 201

    Direct patterning of vortex generators on a fiber tip using a focused ion beam

    No full text
    The realization of spiral phase optical elements on the cleaved end of an optical fiber by focused ion beam milling is presented. A focused Ga+ ion beam with an acceleration voltage of 30 keV is used to etch continuous spiral phase plates and fork gratings directly on the tip of the fiber. The phase characteristics of the output beam generated by the fabricated structures measured via an interference experiment confirmed the presence of phase singularity in the output beam. The devices are expected to be promising candidates for all-fiber beam shaping and optical trapping applications

    Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation

    No full text
    corecore