98 research outputs found

    HPIPE: Heterogeneous Layer-Pipelined and Sparse-Aware CNN Inference for FPGAs

    Full text link
    We present both a novel Convolutional Neural Network (CNN) accelerator architecture and a network compiler for FPGAs that outperforms all prior work. Instead of having generic processing elements that together process one layer at a time, our network compiler statically partitions available device resources and builds custom-tailored hardware for each layer of a CNN. By building hardware for each layer we can pack our controllers into fewer lookup tables and use dedicated routing. These efficiencies enable our accelerator to utilize 2x the DSPs and operate at more than 2x the frequency of prior work on sparse CNN acceleration on FPGAs. We evaluate the performance of our architecture on both sparse Resnet-50 and dense MobileNet Imagenet classifiers on a Stratix 10 2800 FPGA. We find that the sparse Resnet-50 model has throughput at a batch size of 1 of 4550 images/s, which is nearly 4x the throughput of NVIDIA's fastest machine learning targeted GPU, the V100, and outperforms all prior work on FPGAs.Comment: 8 Pages, 11 Figure

    Characterization of intra-litter variation on myogenic development and myogenic progenitor cell response to growth promoting stimuli

    Get PDF
    Doctor of PhilosophyDepartment of Animal Sciences and IndustryJohn M. GonzalezThis series of studies focuses on the impact of intra-litter variation on fetal myogenesis, and the ability of porcine progenitor cells to respond to growth promoting stimuli. In study 1, the smallest (SM), median (ME), and largest (LG) male fetuses from each litter were selected for muscle morphometric analysis from gilts at d-60 ± 2 and 95 ± 2 of gestation. On d-60 and 95 of gestation LG fetuses had greater whole muscle cross-sectional area (CSA) than ME and SM fetuses, and ME fetuses had greater whole muscle CSA than SM fetuses. Indicating that SM and ME fetuses are on a delayed trajectory for myogenesis compared to LG fetuses. At d-60 the advanced trajectory of LG compared to ME fetuses was due to increased development of secondary muscle fibers; whereas, the advanced myogenic development of LG and ME fetuses compared to SM fetuses was due to the presence of fewer primary and secondary muscle fibers. At d-95 of gestation the advanced myogenic development of LG and ME was due to increased hypertrophy of secondary muscle fibers. For study 2, porcine fetal myoblasts (PFM) were isolated from SM, ME, and LG fetuses from d-60 ± 2 of gestation fetuses and for study 3, porcine satellite cells (PSC) were isolated from the piglet nearest the average body weight of the litter. Both myogenic cell types were utilized to evaluate effects of porcine plasma on proliferation, differentiation, and indications of protein synthesis. For the proliferation assay, cells were exposed to one of three treatments: high serum which consisted high-glucose Dulbecco's Modified Eagle Medium supplemented with 10% (vol/vol) fetal bovine serum, 2% (vol/vol) porcine serum, 100 U penicillan/mL, 100 µg of strepmycin/mL, and 20 µg of gentamicin/mL (HS), low serum which consisted of HS without 10% FBS (LS), and LS supplemented with 10% (wt/vol) porcine plasma (PP). Treatments for the differentiation and protein synthesis assays consisted of either HS or LS media that either contained porcine plasma at 10% (wt/vol; PPP) or 0% (wt/vol; PPN). The HS-PFM had a greater proliferation rate compared to the LS and PP-PFM, and PP-PFM had a greater proliferation rate compared to LS-PFM. The LG fetuses’ PFM had a reduced proliferation rate compared to SM and ME fetuses’ PFM, which were similar. The PPP-PFM had a decreased myotube diameter compared to PPN-PFM. Small fetuses’ PFM had a greater myotube diameter compared to ME and LG fetuses’ PFM, and ME fetuses’ PFM had a greater myotube diameter compared to LG fetuses’ PFM. The proliferation rate of PP-PSC was decreased compared to the HS- and LS-PSC, and HS-PSC had a greater proliferation rate compared to LS-PSC. The PPP-PSC had greater differentiation capacity and myotube diameter than PPN-PSC. In conjunction these results indicate divergent myogenic development among different fetal sizes within a litter and suggest that porcine plasma supplementation stimulates myogenic progenitor cell activity in an age specific manner

    Influence of Porcine Plasma Supplementation on Gestating Sow Serum IGF-1 Concentration and Litter Weights

    Get PDF
    The objective of this pilot study was to determine the effect of dietary porcine plasma on circulating insulin-like growth factor 1 (IGF-1) concentrations in gestating sows and characteristics of their litters. Primiparous and multiparous sows were randomly allocated to two treatment groups of sows fed a basal diet or sows fed the basal diet plus 6 g of porcine plasma throughout gestation. On 4 periods during gestation and farrowing, blood was collected for IGF-1 analysis. After farrowing, gestation length, number born, birth weight, and total litter weight were recorded. There were no three-way or two-way interactions between treatments, day of gestation, or parity for sow IGF-1 concentration (P\u3e0.142). Treatment also did not affect (P=0.117) sow IGF-1 concentration. There were no treatment × parity or treatment effects on litter measures (P=0.170). Feeding porcine plasma at the low level employed in the study did not improve sow IGF-1 or litter measures. Keywords: Piglets, Fetal Growth, Porcine Plasm

    Effect of stocker management program on beef cattle skeletal muscle growth characteristics, satellite cell activity, and paracrine signaling impact on preadipocyte differentiation

    Get PDF
    The objective of this study was to determine the effect of different stocker management programs on skeletal muscle development and growth characteristics, satellite cell (SC) activity in growing-finishing beef cattle as well as the effects of SC-conditioned media on preadipocyte gene expression and differentiation. Fall-weaned Angus steers (n = 76; 258 ± 28 kg) were randomly assigned to 1 of 4 stocker production systems: 1) grazing dormant native range (NR) supplemented with a 40% CP cottonseed meal-based supplement (1.02 kg ∙ steer–1 ∙ d–1) followed by long-season summer grazing (CON, 0.46 kg/d); 2) grazing dormant NR supplemented with a ground corn and soybean meal-based supplement fed at 1% of BW followed by short-season summer grazing (CORN, 0.61 kg/d); 3) grazing winter wheat pasture (WP) at high stocking density (3.21 steers/ha) to achieve a moderate rate of gain (LGWP, 0.83 kg/d); and 4) grazing winter WP at low stocking density (0.99 steers/ha) to achieve a high rate of gain (HGWP, 1.29 kg/d). At the end of the stocker (intermediate harvest, IH) and finishing (final harvest, FH) phases, 4 steers / treatment were harvested and longissimus muscles (LM) sampled for cryohistological immunofluorescence analysis and SC culture assays. At IH, WP steers had greater LM fiber cross-sectional area than NR steers; however, at FH, the opposite was observed (p \u3c 0.0001). At IH, CORN steers had the lowest Myf-5+:Pax7+ SC density (p = 0.020), while LGWP steers had the most Pax7+ SC (p = 0.043). At FH, CON steers had the highest LM capillary density (p = 0.003) and their cultured SC differentiated more readily than all other treatments (p = 0.017). At FH, Pax7 mRNA was more abundant in 14 d-old SC cultures from HGWP cattle (p = 0.03). Preadipocytes exposed to culture media from proliferating SC cultures from WP cattle isolated at FH had more PPARγ (p = 0.037) and less FABP4 (p = 0.030) mRNA expression compared with NR cattle. These data suggest that different stocker management strategies can impact skeletal muscle growth, SC function, and potentially impact marbling development in growing-finishing beef cattle

    Distinct Activation Phenotype of a Highly Conserved Novel HLA-B57-Restricted Epitope during Dengue Virus Infection

    Get PDF
    Variation in the sequence of T cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T cell responses during second heterologous infections. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57-NS126-34-specific CD8+ T cells in PBMC from individuals undergoing secondary rather than primary DENV infection. However, high tetramer-positive T cell frequencies during acute infection were seen in only 1 of 9 subjects with secondary infection. B57-NS126-34-specific and other DENV epitope-specific CD8+ T cells, as well as total CD8+ T cells, expressed an activated phenotype (CD69+ and/or CD38+) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope-specific CD8+ T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T cell activation

    Interaction of a dengue virus NS1-derived peptide with the inhibitory receptor KIR3DL1 on natural killer cells

    Get PDF
    Killer immunoglobulin-like receptors (KIRs) interact with human leucocyte antigen (HLA) class I ligands and play a key role in the regulation and activation of NK cells. The functional importance of KIR–HLA interactions has been demonstrated for a number of chronic viral infections, but to date only a few studies have been performed in the context of acute self-limited viral infections. During our investigation of CD81 T cell responses to a conserved HLA-B57-restricted epitope derived from dengue virus (DENV) non-structural protein-1 (NS1), we observed substantial binding of the tetrameric complex to non-T/non-B lymphocytes in peripheral blood mononuclear cells (PBMC) from a long-standing clinical cohort in Thailand. We confirmed binding of the NS1 tetramer to CD56dim NK cells, which are known to express KIRs. Using depletion studies and KIRtransfected cell lines, we demonstrated further that the NS1 tetramer bound the inhibitory receptor KIR3DL1. Phenotypical analysis of PBMC from HLA-B571 subjects with acute DENV infection revealed marked activation of NS1 tetramer-binding natural killer (NK) cells around the time of defervescence in subjects with severe dengue disease. Collectively, our findings indicate that subsets of NK cells are activated relatively late in the course of acute DENV illness and reveal a possible role for specific KIR– HLA interactions in the modulation of disease outcomes

    HLA Class I and Class II Associations in Dengue Viral Infections in a Sri Lankan Population

    Get PDF
    BACKGROUND: HLA class I and class II alleles have been shown to be associated with the development of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS) in different populations. However, the majority of studies have been based on limited numbers of patients. In this study we aimed to investigate the HLA-class I and class II alleles that are positively and negatively associated with the development of DSS in a cohort of patients with DHF and also the alleles associated with development of DHF during primary dengue infections in a Sri Lankan population. METHODOLOGY/PRINCIPAL FINDINGS: The allele frequencies of HLA class I and class II alleles were compared in 110 patients with DHF and 119 individuals from the population who had never reported a symptomatic dengue infection at the time of recruitment. We found that HLA-A*31 (corrected P = 0.01) and DRB1*08 (corrected P = 0.009) were associated with susceptibility to DSS when infected with the dengue virus, during secondary dengue infection. The frequency of DRB1*08 allele was 28.7 times higher than in the normal population in patients with DSS. HLA-A*31 allele was increased 16.6 fold in DHF who developed shock when compared to those who did not develop shock. A*24 (corrected P = 0.03) and DRB1*12 (corrected P = 0.041) were strongly associated with the development of DHF during primary dengue infection. CONCLUSIONS/SIGNIFICANCE: These data suggest that certain HLA alleles confer susceptibility/protection to severe dengue infections. As T cell epitope recognition depend on the HLA type of an individual, it would be now important to investigate how epitope specific T cells associate with primary and secondary dengue infections and in severe dengue infections

    Dengue vaccines: what we know, what has been done, but what does the future hold?

    Get PDF
    Dengue, a disease caused by any of the four serotypes of dengue viruses, is the most important arthropod-borne viral disease in the world in terms of both morbidity and mortality. The infection by these viruses induces a plethora of clinical manifestations ranging from asymptomatic infections to severe diseases with involvement of several organs. Severe forms of the disease are more frequent in secondary infections by distinct serotypes and, consequently, a dengue vaccine must be tetravalent. Although several approaches have been used on the vaccine development, no vaccine is available against these viruses, especially because of problems on the development of a tetravalent vaccine. Here, we describe briefly the vaccine candidates available and their ability to elicit a protective immune response. We also discuss the problems and possibilities of any of the vaccines in final development stage reaching the market for human use
    • …
    corecore