9 research outputs found

    A new tool for faster construction of marine biotechnology collaborative networks.

    Get PDF
    The increasing and rapid development in technologies, infrastructures, computational power, data availability and information flow has enabled rapid scientific advances. These entail transdisciplinary collaborations that maximize sharing of data and knowledge and, consequently, results, and possible technology transfer. However, in emerging scientific fields it is sometimes difficult to provide all necessary expertise within existing collaborative circles. This is especially true for marine biotechnology that directly addresses global societal challenges. This article describes the creation of a platform dedicated to facilitating the formation of short or mid-term collaborative networks in marine biotechnology. This online platform (https://www.ocean4biotech.eu/map/) enables experts (researchers and members of the marine biotechnology community in general) to have the possibility to showcase their expertise with the aim of being integrated into new collaborations/consortia on the one hand, or to use it as a search tool to complement the expertise in planned/running collaborations, on the other. The platform was created within the Ocean4Biotech (European transdisciplinary networking platform for marine biotechnology) Action, funded under the framework of the European Cooperation in Science and Technology (COST). To build the platform, an inquiry was developed to identify experts in marine biotechnology and its adjunct fields, to define their expertise, to highlight their infrastructures and facilities and to pinpoint the main bottlenecks in this field. The inquiry was open to all experts in the broad field of marine biotechnology, including non-members of the consortium. The inquiry (https://ee.kobotoolbox.org/single/UKVsBNtD) remains open for insertion of additional expertise and the resulting interactive map can be used as a display and search tool for establishing new collaborations

    From the sea to aquafeed: A perspective overview

    Get PDF
    Aquaculture has been one of the fastest-growing food production systems sectors for over three decades. With its growth, the demand for alternative, cheaper and high-quality feed ingredients is also increasing. Innovation investments on providing new functional feed alternatives have yielded several viable alternative raw materials. Considering all the current feed ingredients, their circular adaption in the aquafeed manufacturing industry is clearly of the utmost importance to achieve sustainable aquaculture in the near future. The use of terrestrial plant materials and animal by-products predominantly used in aquafeed ingredients puts a heavily reliance on terrestrial agroecosystems, which also has its own sustainability concerns. Therefore, the aquafeed industry needs to progress with functional and sustainable alternative raw materials for feed that must be more resilient and consistent, considering a circular perspective. In this review, we assess the current trends in using various marine organisms, ranging from microorganisms (including fungi, thraustochytrids, microalgae and bacteria) to macroalgae and macroinvertebrates as viable biological feed resources. This review focuses on the trend of circular use of resources and the development of new value chains. In this, we present a perspective of promoting novel circular economy value chains that promote the re-use of biological resources as valuable feed ingredients. Thus, we highlight some potentially important marine-derived resources that deserve further investigations for improving or addressing circular aquaculture

    Marine Biotechnology, Revealing an Ocean of Opportunities

    No full text
    P4-0432 8MED20_4.1_SP_001 LA/P/0140/2020 lzp-2020/1-0054 “MATRI-Xpublishersversionpublishe

    THE MOSQUITO FAUNA OF THE REPUBLIC OF CYPRUS: A REVISED LIST

    No full text
    The Cyprus Public Health Service has regularly conducted mosquito Surveillance in the Republic of cyprus over the past 10 years. Twenty-three species belonging to 6 genera and 10 subgenera have been recorded to date, including species documented from earlier Surveys. As a result of this program, new mosquito species for Cyprus have been recorded, including Anopheles marteri, Culex theileri, Cx. impudicus, Culiseta subochrea, and Uranotaenia unguiculata. Importantly, mosquito species previously considered eradicated have reemerged (An. sacharovi). Monitoring and identification of mosquito species is an important component of the Public Heath Set-vice’s commitment to protecting the health of residents and preventing the spread of vector-borne diseases

    Gaps Analysis and Recommendations for Increased Knowledge in the Marine Biotechnology Community

    No full text
    Funding Information: Funding: This publication is based upon work from COST Action CA18238 (Ocean4Biotech), funded by the European Cooperation in Science and Technology (COST) Program in the period 2019–2023. The work of Stroil, B.K was cofounded by the COST Action CA18238 through the Virtual Mobility grant. This work is financed by national funds from FCT—Fundação para a Ciência e a Tecnolo-gia, IP, in the scope of the project UIDP/04378/2020 of the Research Unit on Applied Molecular Biosciences—UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HB. This work is also financed by the Research Council of Norway (NCR319577SAFERIMTA) and Møreforsking AS. Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.As the quest for marine-derived compounds with pharmacological and biotechnological potential upsurges, the importance of following regulations and applying Responsible Research and Innovation (RRI) also increases. This article aims at: (1) presenting an overview of regulations and policies at the international and EU level, while demonstrating a variability in their implementation; (2) highlighting the importance of RRI in biodiscovery; and (3) identifying gaps and providing recommendations on how to improve the market acceptability and compliance of novel Blue Biotechnology compounds. This article is the result of the work of the Working Group 4 “Legal aspects, IPR and Ethics” of the COST Action CA18238 Ocean4Biotech, a network of more than 130 Marine Biotechnology scientists and practitioners from 37 countries. Three qualitative surveys (“Understanding of the Responsible Research and Innovation concept”, “Application of the Nagoya Protocol in Your Research”, and “Brief Survey about the experiences regarding the Nagoya Protocol”) indicate awareness and application gaps of RRI, the Nagoya Protocol, and the current status of EU policies relating to Blue Biotechnology. The article categorises the identified gaps into five main categories (awareness, understanding, education, implementation, and enforcement of the Nagoya Protocol) and provides recommendations for mitigating them at the European, national, and organisational level.publishersversionpublishe

    Integrating environmental DNA monitoring to inform eel (Anguilla anguilla) status in freshwaters at their easternmost range—A case study in Cyprus

    Get PDF
    Abstract Despite significant population declines and targeted European Union regulations aimed at Anguilla anguilla conservation, little attention has been given to their status at their easternmost range. This study applies wide‐scale integrated monitoring to uncover the present‐day eel distribution in Cyprus' inland freshwaters. These are subject to increasing pressures from water supply requirements and dam construction, as seen throughout the Mediterranean. We applied environmental DNA metabarcoding of water samples to determine A. anguilla distribution in key freshwater catchments. In addition, we present this alongside 10 years of electrofishing/netting data. Refuge traps were also deployed to establish the timing of glass eel recruitment. These outputs are used together, alongside knowledge of the overall fish community and barriers to connectivity, to provide eel conservation and policy insights. This study confirm the presence of A. anguilla in Cyprus' inland freshwaters, with recruitment occurring in March. Eel distribution is restricted to lower elevation areas, and is negatively associated with distance from coast and barriers to connectivity. Many barriers to connectivity are identified, though eels were detected in two reservoirs upstream of dams. The overall fish community varies between freshwater habitat types. Eels are much more widespread in Cyprus than previously thought, yet mostly restricted to lowland intermittent systems. These findings make a case to reconsider the requirement for eel management plans. Environmental DNA‐based data collected in 2020 indicate that “present‐day” eel distribution is representative of 10‐year survey trends. Suggesting that inland freshwaters may act as an unrealized refuge at A. anguilla's easternmost range. Conservation efforts in Mediterranean freshwaters should focus on improving connectivity, therefore enabling eels to access inland perennial refugia. Thus, mitigating the impact of climate change and the growing number of fragmented artificially intermittent river systems

    Bioconversion of alkaloids to high-value chemicals: Comparative analysis of newly isolated lupanine degrading strains

    No full text
    This work explores the potential for development of a lupanine valorization process evaluating different isolated microorganisms for their capacity to metabolize the alkaloid. Ecotoxicological assessment demonstrated that lupanine is toxic for Vibrio fischeri and Daphnia magna exhibiting EC50 values of 89 mg L−1 and 47 mg L−1 respectively, while acting both as growth inhibitor for a monocotyledonous and as promoter for a dicotyledonous plant. Among the eight aerobic and anaerobic strains isolated and identified Rhodococcus rhodochrous LPK211 achieved 81% removal for 1.5 g L−1 lupanine, while no end-products were detected by NMR constituting a promising microorganism for lupanine biodegradation. Moreover, Rhodococcus ruber LPK111 and Rhodococcus sp. LPK311 exhibited 66% and 71% of removal respectively, including potential formation of lupanine N-oxide. Pseudomonas putida LPK411 reached 80% of lupanine removal and generated three fermentation products potentially comprising 17-oxolupanine and lupanine derivatives with open ring structures enabling the development of alkaloid valorization processes

    A new network for the advancement of marine biotechnology in europe and beyond

    Get PDF
    Marine organisms produce a vast diversity of metabolites with biological activities useful for humans, e.g., cytotoxic, antioxidant, anti-microbial, insecticidal, herbicidal, anticancer, pro-osteogenic and pro-regenerative, analgesic, anti-inflammatory, anticoagulant, cholesterol-lowering, nutritional, photoprotective, horticultural or other beneficial properties. These metabolites could help satisfy the increasing demand for alternative sources of nutraceuticals, pharmaceuticals, cosmeceuticals, food, feed, and novel bio-based products. In addition, marine biomass itself can serve as the source material for the production of various bulk commodities (e.g., biofuels, bioplastics, biomaterials). The sustainable exploitation of marine bio-resources and the development of biomolecules and polymers are also known as the growing field of marine biotechnology. Up to now, over 35,000 natural products have been characterized from marine organisms, but many more are yet to be uncovered, as the vast diversity of biota in the marine systems remains largely unexplored. Since marine biotechnology is still in its infancy, there is a need to create effective, operational, inclusive, sustainable, transnational and transdisciplinary networks with a serious and ambitious commitment for knowledge transfer, training provision, dissemination of best practices and identification of the emerging technological trends through science communication activities. A collaborative (net)work is today compelling to provide innovative solutions and products that can be commercialized to contribute to the circular bioeconomy. This perspective article highlights the importance of establishing such collaborative frameworks using the example of Ocean4Biotech, an Action within the European Cooperation in Science and Technology (COST) that connects all and any stakeholders with an interest in marine biotechnology in Europe and beyond

    A New Network for the Advancement of Marine Biotechnology in Europe and Beyond

    No full text
    Marine organisms produce a vast diversity of metabolites with biological activities useful for humans, e.g., cytotoxic, antioxidant, anti-microbial, insecticidal, herbicidal, anticancer, pro-osteogenic and pro-regenerative, analgesic, anti-inflammatory, anti-coagulant, cholesterol-lowering, nutritional, photoprotective, horticultural or other beneficial properties. These metabolites could help satisfy the increasing demand for alternative sources of nutraceuticals, pharmaceuticals, cosmeceuticals, food, feed, and novel bio-based products. In addition, marine biomass itself can serve as the source material for the production of various bulk commodities (e.g., biofuels, bioplastics, biomaterials). The sustainable exploitation of marine bio-resources and the development of biomolecules and polymers are also known as the growing field of marine biotechnology. Up to now, over 35,000 natural products have been characterized from marine organisms, but many more are yet to be uncovered, as the vast diversity of biota in the marine systems remains largely unexplored. Since marine biotechnology is still in its infancy, there is a need to create effective, operational, inclusive, sustainable, transnational and transdisciplinary networks with a serious and ambitious commitment for knowledge transfer, training provision, dissemination of best practices and identification of the emerging technological trends through science communication activities. A collaborative (net)work is today compelling to provide innovative solutions and products that can be commercialized to contribute to the circular bioeconomy. This perspective article highlights the importance of establishing such collaborative frameworks using the example of Ocean4Biotech, an Action within the European Cooperation in Science and Technology (COST) that connects all and any stakeholders with an interest in marine biotechnology in Europe and beyond
    corecore