375 research outputs found
Ultrafast time-resolved photoluminescence from novel metal–dendrimer nanocomposites
We report the first results of ultra-fast enhanced light emission from gold– and silver–dendrimer nanocomposites. There is a fast (70 fs) fluorescence decay component associated with the metal nanocomposites. Anisotropy measurements show that this fast component is depolarized. The enhanced emission is suggestively due to local field enhancement in the elongated metal–dendrimer nanoparticles. © 2001 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71043/2/JCPSA6-114-5-1962-1.pd
Two-Photon Fluorescence Spectroscopy and Imaging of 4-Dimethylaminonaphthalimide Peptide and Protein Conjugates
We report detailed photophysical studies on the two-photon fluorescence processes of the solvatochromic fluorophore 4-DMN as a conjugate of the calmodulin (CaM) and the associated CaM-binding peptide M13. Strong two-photon fluorescence enhancement has been observed which is associated with calcium binding. It is found that the two-photon absorption cross-section is strongly dependent on the local environment surrounding the 4-DMN fluorophore in the CaM conjugates, providing sensitivity between sites of fluorophore attachment. Utilizing time-resolved measurements, the emission dynamics of 4-DMN under various environmental (solvent) conditions are analyzed. In addition, anisotropy measurements reveal that the 4-DMN–S38C–CaM system has restricted rotation in the calcium-bound calmodulin. To establish the utility for cellular imaging, two-photon fluorescence microscopy studies were also carried out with the 4-DMN-modified M13 peptide in cells. Together, these studies provide strong evidence that 4-DMN is a useful probe in two-photon imaging, with advantageous properties for cellular experiments.German Science Foundation (SO 1100/1-1
Ultrafast Optical Study of Small Gold Monolayer Protected Clusters: A Closer Look at Emission
Monolayer-protected metal nanoclusters (MPCs) were investigated to probe their fundamental excitation and emission properties. In particular, gold MPCs were probed by steady-state and time-resolved spectroscopic measurements; the results were used to examine the mechanism of emission in relation to the excited states in these systems. In steady-state measurements, the photoluminescence of gold clusters in the range of 25 to 140 atoms was considerably stronger relative to larger particle analogues. The increase in emission efficiency (for Au25, Au55, and Au140 on the order of 10-5) over bulk gold may arise from a different mechanism of photoluminescence, as suggested by measurements on larger gold spheres and rods. Results of fluorescence upconversion found considerably longer lifetimes for smaller gold particles than for larger particles. Measurements of the femtosecond transient absorption of the smaller clusters suggested dramatically different behavior than what was observed for larger particles. These results, combined with the result of a new bleach band in the transient absorption signal (which is presumably due to an unforeseen ground state absorption), suggest that quantum size effects and associated discrete molecular-like state structure play a key role in enhanced visible fluorescence of small clusters
Creation and luminescence of size-selected gold nanorods
Fluorescent metal nanoparticles have attracted great interest in recent years for their unique properties and potential applications. Their optical behaviour depends not only on size but also on shape, and will only be useful if the morphology is stable. In this work, we produce stable size-selected gold nanorods (aspect ratio 1-2) using a size-selected cluster source and correlate their luminescence behaviour with the particle shape. Thermodynamic modelling is used to predict the preferred aspect ratio of 1.5, in agreement with the observations, and confirms that the double-icosahedron observed in experiments is significantly lower in energy than the alternatives. Using these samples a fluorescence lifetime imaging microscopy study observed two photon luminescence from nanoparticle arrays and a fast decay process (<100 ps luminescence lifetime), which are similar to those found from ligand stabilized gold nanorods under the same measurement conditions, indicating that a surface plasmon enhanced two-photon excitation process is still active at these small sizes. By further reducing the nanoparticle size, this approach has the potential to investigate size-dependent luminescence behaviour at smaller sizes than has been possible before
Mechanisms of light energy harvesting in dendrimers and hyperbranched polymers
Since their earliest synthesis, much interest has arisen in the use of dendritic and structurally allied forms of polymer for light energy harvesting, especially as organic adjuncts for solar energy devices. With the facility to accommodate a proliferation of antenna chromophores, such materials can capture and channel light energy with a high degree of efficiency, each polymer unit potentially delivering the energy of one photon-or more, when optical nonlinearity is involved. To ensure the highest efficiency of operation, it is essential to understand the processes responsible for photon capture and channelling of the resulting electronic excitation. Highlighting the latest theoretical advances, this paper reviews the principal mechanisms, which prove to involve a complex interplay of structural, spectroscopic and electrodynamic properties. Designing materials with the capacity to capture and control light energy facilitates applications that now extend from solar energy to medical photonics. © 2011 by the authors; licensee MDPI, Basel, Switzerland
Origin of spectral broadening in pi-conjugated amorphous semiconductors
We present a study of the picosecond fluorescence dynamics of pi-conjugated semiconducting organic dendrimers in the solid state. By varying the degree of branching within the dendrons, referred to as the dendrimer generation, a control of intermolecular spacing of the emissive core and therefore of the lattice parameter for Forster-type energy transfer is achieved. This allows a distinction between spectral diffusion and excimer formation as the two main sources of spectral broadening in organic semiconductors. Whereas Forster-type dispersive spectral relaxation is independent of temperature but strongly dependent on the interchromophore distance, excimer formation is also strongly thermally activated due to temperature-dependent conformational changes and the influence of thermally activated dynamic disorder. The rapid spectral diffusion allows a determination of the excimer rise in the emission, which is shown to have a profound impact on the steady state luminescence properties of dendrimer films. We show that the dendrimer generation not only allows a microscopic control of intermolecular interactions but also a direct control of the rate of spectral diffusion. Implications for the design of novel materials for optoelectronic devices are discussed
A Porcine Adenovirus with Low Human Seroprevalence Is a Promising Alternative Vaccine Vector to Human Adenovirus 5 in an H5N1 Virus Disease Model
Human adenovirus 5 (AdHu5) vectors are robust vaccine platforms however the presence of naturally-acquired neutralizing antibodies may reduce vector efficacy and potential for re-administration. This study evaluates immune responses and protection following vaccination with a replication-incompetent porcine adenovirus 3 (PAV3) vector as an alternative vaccine to AdHu5 using an avian influenza H5N1 disease model. Vaccine efficacy was evaluated in BALB/c mice following vaccination with different doses of the PAV3 vector expressing an optimized A/Hanoi/30408/2005 H5N1 hemagglutinin antigen (PAV3-HA) and compared with an AdHu5-HA control. PAV3-HA rapidly generated antibody responses, with significant neutralizing antibody titers on day 21, and stronger cellular immune responses detected on day 8, compared to AdHu5-HA. The PAV3-HA vaccine, administered 8 days before challenge, demonstrated improved survival and lower virus load. Evaluation of long-term vaccine efficacy at 12 months post-vaccination showed better protection with the PAV3-HA than with the AdHu5-HA vaccine. Importantly, as opposed to AdHu5, PAV3 vector was not significantly neutralized by human antibodies pooled from over 10,000 individuals. Overall, PAV3-based vector is capable of mediating swift, strong immune responses and offer a promising alternative to AdHu5
Continuous-Time Quantum Walks: Models for Coherent Transport on Complex Networks
This paper reviews recent advances in continuous-time quantum walks (CTQW)
and their application to transport in various systems. The introduction gives a
brief survey of the historical background of CTQW. After a short outline of the
theoretical ideas behind CTQW and of its relation to classical continuous-time
random walks (CTRW) in Sec.~2, implications for the efficiency of the transport
are presented in Sec.~3. The fourth section gives an overview of different
types of networks on which CTQW have been studied so far. Extensions of CTQW to
systems with long-range interactions and with static disorder are discussed in
section V. Systems with traps, i.e., systems in which the walker's probability
to remain inside the system is not conserved, are presented in section IV.
Relations to similar approaches to the transport are studied in section VII.
The paper closes with an outlook on possible future directions.Comment: review article to appear in Physics Reports, 39 pages, 44 figure
- …