660 research outputs found

    Bifurcation, chaos, and voltage collapse in power systems

    Get PDF
    A model of a power system with load dynamics is studied by investigating qualitative changes in its behavior as the reactive power demand at a load bus is increased. In addition to the saddle node bifurcation often associated with voltage collapse, the system exhibits sub- and supercritical Hopf bifurcations, cyclic fold bifurcation, and period doubling bifurcation. Cascades of period doubling bifurcations terminate in chaotic invariant sets. The presence of these new bifurcations motivates a reexamination of the saddle-node bifurcation as the boundary of the feasible set of power injections.published_or_final_versio

    Absolute backscatter coefficient estimates of tissue-mimicking phantoms in the 5-50 MHz frequency range

    Get PDF
    Absolute backscatter coefficients in tissue-mimicking phantoms were experimentally determined in the 5-50 MHz frequency range using a broadband technique. A focused broadband transducer from a commercial research system, the VisualSonics Vevo 770, was used with two tissue-mimicking phantoms. The phantoms differed regarding the thin layers covering their surfaces to prevent desiccation and regarding glass bead concentrations and diameter distributions. Ultrasound scanning of these phantoms was performed through the thin layer. To avoid signal saturation, the power spectra obtained from the backscattered radio frequency signals were calibrated by using the signal from a liquid planar reflector, a water-brominated hydrocarbon interface with acoustic impedance close to that of water. Experimental values of absolute backscatter coefficients were compared with those predicted by the Faran scattering model over the frequency range 5-50 MHz. The mean percent difference and standard deviation was 54% 6 45% for the phantom with a mean glass bead diameter of 5.40 lm and was 47% 6 28% for the phantom with 5.16 lm mean diameter beads

    Topological structure and dynamics of three-dimensional active nematics.

    Get PDF
    Topological structures are effective descriptors of the nonequilibrium dynamics of diverse many-body systems. For example, motile, point-like topological defects capture the salient features of two-dimensional active liquid crystals composed of energy-consuming anisotropic units. We dispersed force-generating microtubule bundles in a passive colloidal liquid crystal to form a three-dimensional active nematic. Light-sheet microscopy revealed the temporal evolution of the millimeter-scale structure of these active nematics with single-bundle resolution. The primary topological excitations are extended, charge-neutral disclination loops that undergo complex dynamics and recombination events. Our work suggests a framework for analyzing the nonequilibrium dynamics of bulk anisotropic systems as diverse as driven complex fluids, active metamaterials, biological tissues, and collections of robots or organisms

    Mood instability and psychosis : analyses of British national survey data

    Get PDF
    Background: We used British national survey data to test specific hypotheses that mood instability (1) is associated with psychosis and individual psychotic phenomena, (2) predicts the later emergence of auditory hallucinations and paranoid ideation, and (3) mediates the link between child sexual abuse and psychosis. Methods: We analyzed data from the 2000 and 2007 UK national surveys of psychiatric morbidity (N = 8580 and 7403, respectively). The 2000 survey included an 18-month follow-up of a subsample (N = 2406). Mood instability was assessed from the Structured Clinical Interview for DSM-IV Axis II (SCID-II) questionnaire. Our dependent variables comprised auditory hallucinations, paranoid ideation, the presence of psychosis overall, and a 15-item paranoia scale. Results: Mood instability was strongly associated in cross-sectional analyses with psychosis (2000: OR: 7.5; 95% CI: I 4.1–13.8; 2007: OR: 21.4; CI: 9.7–41.2), paranoid ideation (2000: OR: 4.7; CI: 4.1–5.4; 2007: OR: 5.7; CI: 4.9–6.7), auditory hallucinations (2000: OR: 3.4; CI: 2.6–4.4; 2007: OR 3.5; CI: 2.7–4.7), and paranoia total score (2000: Coefficient: 3.6; CI: 3.3–3.9), remaining so after adjustment for current mood state. Baseline mood instability significantly predicted 18-month inceptions of paranoid ideation (OR: 2.3; CI: 1.6–3.3) and of auditory hallucinations (OR: 2.6; CI: 1.5–4.4). Finally, it mediated a third of the total association of child sexual abuse with psychosis and persecutory ideation and a quarter of that with auditory hallucinations. Conclusions: Mood instability is a prominent feature of psychotic experience and may have a role in its genesis. Targeting mood instability could lead to innovative treatments for psychosis

    Variable resistance to zinc intoxication among Streptococcus agalactiae reveals a novel IS1381 insertion element within the zinc efflux transporter gene czcD

    Get PDF
    Streptococcus agalactiae, also known as group B Streptococcus, is an important human and animal pathogen. Zinc (Zn) is an essential trace element for normal bacterial physiology but intoxicates bacteria at high concentrations. Molecular systems for Zn detoxification exist in S. agalactiae, however the degree to which Zn detoxification may vary among different S. agalactiae isolates is not clear. We measured resistance to Zn intoxication in a diverse collection of clinical isolates of S. agalactiae by comparing the growth of the bacteria in defined conditions of Zn stress. We found significant differences in the ability of different S. agalactiae isolates to resist Zn intoxication; some strains such as S. agalactiae 18RS21 were able to survive and grow at 3.8-fold higher levels of Zn stress compared to other reference strains such as BM110 (6.4mM vs 1.68mM Zn as inhibitory, respectively). We performed in silico analysis of the available genomes of the S. agalactiae isolates used in this study to examine the sequence of czcD, which encodes an efflux protein for Zn that supports resistance in S. agalactiae. Interestingly, this revealed the presence of a mobile insertion sequence (IS) element, termed IS1381, in the 5′ region of czcD in S. agalactiae strain 834, which was hyper-resistant to Zn intoxication. Interrogating a wider collection of S. agalactiae genomes revealed identical placement of IS1381 in czcD in other isolates from the clonal-complex-19 (CC19) 19 lineage. Collectively, these results show a resistance spectrum among S. agalactiae isolates enables survival in varying degrees of Zn stress, and this phenotypic variability has implications for understanding bacterial survival in metal stress

    DNA Suspension Arrays: Silencing Discrete Artifacts for High-Sensitivity Applications

    Get PDF
    Detection of low frequency single nucleotide polymorphisms (SNPs) has important implications in early screening for tumorgenesis, genetic disorders and pathogen drug resistance. Nucleic acid arrays are a powerful tool for genome-scale SNP analysis, but detection of low-frequency SNPs in a mixed population on an array is problematic. We demonstrate a model assay for HIV-1 drug resistance mutations, wherein ligase discrimination products are collected on a suspension array. In developing this system, we discovered that signal from multiple polymorphisms was obscured by two discrete hybridization artifacts. Specifically: 1) tethering of unligated probes on the template DNA elicited false signal and 2) unpredictable probe secondary structures impaired probe capture and suppressed legitimate signal from the array. Two sets of oligonucleotides were used to disrupt these structures; one to displace unligated reporter labels from the bead-bound species and another to occupy sequences which interfered with array hybridization. This artifact silencing system resulted in a mean 21-fold increased sensitivity for 29 minority variants of 17 codons in our model assay for mutations most commonly associated with HIV-1 drug resistance. Furthermore, since the artifacts we characterized are not unique to our system, their specific inhibition might improve the quality of data from solid-state microarrays as well as from the growing number of multiple analyte suspension arrays relying on sequence-specific nucleic acid target capture

    Evaluation of a minimally invasive cell sampling device coupled with assessment of trefoil factor 3 expression for diagnosing Barrett's esophagus: a multi-center case-control study.

    Get PDF
    BACKGROUND: Barrett's esophagus (BE) is a commonly undiagnosed condition that predisposes to esophageal adenocarcinoma. Routine endoscopic screening for BE is not recommended because of the burden this would impose on the health care system. The objective of this study was to determine whether a novel approach using a minimally invasive cell sampling device, the Cytosponge, coupled with immunohistochemical staining for the biomarker Trefoil Factor 3 (TFF3), could be used to identify patients who warrant endoscopy to diagnose BE. METHODS AND FINDINGS: A case-control study was performed across 11 UK hospitals between July 2011 and December 2013. In total, 1,110 individuals comprising 463 controls with dyspepsia and reflux symptoms and 647 BE cases swallowed a Cytosponge prior to endoscopy. The primary outcome measures were to evaluate the safety, acceptability, and accuracy of the Cytosponge-TFF3 test compared with endoscopy and biopsy. In all, 1,042 (93.9%) patients successfully swallowed the Cytosponge, and no serious adverse events were attributed to the device. The Cytosponge was rated favorably, using a visual analogue scale, compared with endoscopy (p < 0.001), and patients who were not sedated for endoscopy were more likely to rate the Cytosponge higher than endoscopy (Mann-Whitney test, p < 0.001). The overall sensitivity of the test was 79.9% (95% CI 76.4%-83.0%), increasing to 87.2% (95% CI 83.0%-90.6%) for patients with ≥3 cm of circumferential BE, known to confer a higher cancer risk. The sensitivity increased to 89.7% (95% CI 82.3%-94.8%) in 107 patients who swallowed the device twice during the study course. There was no loss of sensitivity in patients with dysplasia. The specificity for diagnosing BE was 92.4% (95% CI 89.5%-94.7%). The case-control design of the study means that the results are not generalizable to a primary care population. Another limitation is that the acceptability data were limited to a single measure. CONCLUSIONS: The Cytosponge-TFF3 test is safe and acceptable, and has accuracy comparable to other screening tests. This test may be a simple and inexpensive approach to identify patients with reflux symptoms who warrant endoscopy to diagnose BE

    UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome

    Get PDF
    Clearance of misfolded and aggregated proteins is central to cell survival. Here, we describe a new pathway for maintaining protein homeostasis mediated by the proteasome shuttle factor UBQLN2. The 26S proteasome degrades polyubiquitylated substrates by recognizing them through stoichiometrically bound ubiquitin receptors, but substrates are also delivered by reversibly bound shuttles. We aimed to determine why these parallel delivery mechanisms exist and found that UBQLN2 acts with the HSP70-HSP110 disaggregase machinery to clear protein aggregates via the 26S proteasome. UBQLN2 recognizes client-bound HSP70 and links it to the proteasome to allow for the degradation of aggregated and misfolded proteins. We further show that this process is active in the cell nucleus, where another system for aggregate clearance, autophagy, does not act. Finally, we found that mutations in UBQLN2, which lead to neurodegeneration in humans, are defective in chaperone binding, impair aggregate clearance, and cause cognitive deficits in mice
    • …
    corecore