153 research outputs found

    Obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly a longitudinal study

    Get PDF
    Recent evidence suggests that Obstructive Sleep Apnea (OSA) may be a risk factor for developing Mild Cognitive Impairment and Alzheimer’s disease. However, how sleep apnea affects longitudinal risk for Alzheimer’s disease is less well understood.Postprint (author's final draft

    Necessity of Sleep for Motor Gist Learning in Mice

    Get PDF
    With respect to behavior, the term memory “consolidation” has canonically been used to describe increased fidelity during testing to a learned behavior shaped during training. While the sleeping brain appears to certainly aid in consolidation by this definition for a variety of memories, including motor memories, growing evidence suggests that sleep allows for much more flexible use of the information encountered during prior wakefulness. Sleep has been shown to augment the extraction of gist or patterns from wake experience in human subjects, but this has been difficult to recapitulate in animal models owing to the semantic requirements in many such tasks. Here we establish a model of motor gist learning in mice in which two bouts of exclusive forward running on the rotarod significantly augments the first experience of exclusive backward running. This augmentation does not occur if sleep is disrupted following the forward running template behavior or if a period of natural wakefulness follows one of the two bouts of exclusive forward running. This suggests that sleep is required for the extraction of the motor gist of forward running to apply to backward running

    Non-invasive fractional flow reserve (FFRCT) in the evaluation of acute chest pain ? Concepts and first experiences

    Get PDF
    Objective: To evaluate 30 day rate of major adverse cardiac events (MACE) utilizing cCTA and FFRCT for evaluation of patients presenting to the Emergency Department (ED) with acute chest pain. Materials and methods: Patients between the ages of 18?95 years who underwent clinically indicated cCTA and FFRCT in the evaluation of acute chest pain in the emergency department were retrospectively evaluated for 30 day MACE, repeat presentation/admission for chest pain, revascularization, and additional testing. Results: A total of 59 patients underwent CCTA and subsequent FFRCT for the evaluation of acute chest pain in the ED over the enrollment period. 32 out of 59 patients (54 %) had negative FFRCT (>0.80) out of whom 18 patients (55 %) were discharged from the ED. Out of the 32 patients without functionally significant CAD by FFRCT, 32 patients (100 %) underwent no revascularization and 32 patients (100 %) had no MACE at the 30-day follow-up period. Conclusion: In this limited retrospective study, patients presenting to the ED with acute chest pain and with CCTA with subsequent FFRCT of >0.8 had no MACE at 30 days; however, for many of these patients results were not available at time of clinical decision making by the ED physician

    Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal Atype potassium currents

    Get PDF
    Calcium-calmodulin-dependent kinase II (CaMKII) has a long history of involvement in synaptic plasticity, yet little focus has been given to potassium channels as CaMKII targets despite their importance in repolarizing EPSPs and action potentials and regulating neuronal membrane excitability. We now show that Kv4.2 acts as a substrate for CaMKII in vitro and have identified CaMKII phosphorylation sites as Ser438 and Ser459. To test whether CaMKII phosphorylation of Kv4.2 affects channel biophysics, we expressed wild-type or mutant Kv4.2 and the K ϩ channel interacting protein, KChIP3, with or without a constitutively active form of CaMKII in Xenopus oocytes and measured the voltage dependence of activation and inactivation in each of these conditions. CaMKII phosphorylation had no effect on channel biophysical properties. However, we found that levels of Kv4.2 protein are increased with CaMKII phosphorylation in transfected COS cells, an effect attributable to direct channel phosphorylation based on site-directed mutagenesis studies. We also obtained corroborating physiological data showing increased surface A-type channel expression as revealed by increases in peak K ϩ current amplitudes with CaMKII phosphorylation. Furthermore, endogenous A-currents in hippocampal pyramidal neurons were increased in amplitude after introduction of constitutively active CaMKII, which results in a decrease in neuronal excitability in response to current injections. Thus CaMKII can directly modulate neuronal excitability by increasing cell-surface expression of A-type K ϩ channels

    Sleep oscillation-specific associations with Alzheimer’s disease CSF biomarkers : novel roles for sleep spindles and tau

    Get PDF
    Background: Based on associations between sleep spindles, cognition, and sleep-dependent memory processing, here we evaluated potential relationships between levels of CSF Aβ42, P-tau, and T-tau with sleep spindle density and other biophysical properties of sleep spindles in a sample of cognitively normal elderly individuals. Methods: One-night in-lab nocturnal polysomnography (NPSG) and morning to early afternoon CSF collection were performed to measure CSF Aβ42, P-tau and T-tau. Seven days of actigraphy were collected to assess habitual total sleep time. Results: Spindle density during NREM stage 2 (N2) sleep was negatively correlated with CSF Aβ42, P-tau and T-tau. From the three, CSF T-tau was the most significantly associated with spindle density, after adjusting for age, sex and ApoE4. Spindle duration, count and fast spindle density were also negatively correlated with T-tau levels. Sleep duration and other measures of sleep quality were not correlated with spindle characteristics and did not modify the associations between sleep spindle characteristics and the CSF biomarkers of AD. Conclusions: Reduced spindles during N2 sleep may represent an early dysfunction related to tau, possibly reflecting axonal damage or altered neuronal tau secretion, rendering it a potentially novel biomarker for early neuronal dysfunction. Given their putative role in memory consolidation and neuroplasticity, sleep spindles may represent a mechanism by which tau impairs memory consolidation, as well as a possible target for therapeutic interventions in cognitive decline

    Ranking and characterization of established BMI and lipid associated loci as candidates for gene-environment interactions

    Get PDF
    Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (G×E) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (Pv), G×E interaction effects (with smoking and physical activity), and marginal genetic effects (Pm). Correlations between Pv and Pm were stronger for SNPs with established marginal effects (Spearman’s ρ = 0.401 for triglycerides, and ρ = 0.236 for BMI) compared to all SNPs. When Pv and Pm were compared for all pruned SNPs, only BMI was statistically significant (Spearman’s ρ = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the Pv distribution (Pbinomial <0.05). SNPs from the top 1% of the Pm distribution for BMI had more significant Pv values (PMann–Whitney= 1.46×10−5), and the odds ratio of SNPs with nominally significant (<0.05) Pm and Pv was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant G×E interaction P-values (Pint<0.05) were enriched with nominally significant Pv values (Pbinomial = 8.63×10−9 and 8.52×10−7 for SNP × smoking and SNP × physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for G×E, and variance-based prioritization can be used to identify them

    Rac Inhibition Reverses the Phenotype of Fibrotic Fibroblasts

    Get PDF
    Background: Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce alpha-smooth muscle actin (alpha-SMA), type I collagen and CCN2 (connective tissue growth factor, CTGF). The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies.Methods and Findings: Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc) patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766.Conclusion: Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Single-cell analysis: visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging

    Get PDF
    Detecting metabolites and parent compound within a cell type is now a priority for pharmaceutical development. In this context, three-dimensional secondary ion mass spectrometry (SIMS) imaging was used to investigate the cellular uptake of the antiarrhythmic agent amiodarone, a phospholipidosis-inducing pharmaceutical compound. The high lateral resolution and 3D imaging capabilities of SIMS combined with the multiplex capabilities of ToF mass spectrometric detection allows for the visualization of pharmaceutical compound and metabolites in single cells. The intact, unlabeled drug compound was successfully detected at therapeutic dosages in macrophages (cell line: NR8383). Chemical information from endogenous biomolecules was used to correlate drug distributions with morphological features. From this spatial analysis, amiodarone was detected throughout the cell with the majority of the compound found in the membrane and subsurface regions and absent in the nuclear regions. Similar results were obtained when the macrophages were doped with amiodarone metabolite, desethylamiodarone. The FWHM lateral resolution measured across an intracellular interface in a high lateral resolution ion images was approximately 550 nm. Overall, this approach provides the basis for studying cellular uptake of pharmaceutical compounds and their metabolites on the single cell level

    The Amsterdam Declaration on Fungal Nomenclature

    Get PDF
    The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19–20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current system of naming pleomorphic fungi should be maintained or changed now that molecular data are routinely available. The issue is urgent as mycologists currently follow different practices, and no consensus was achieved by a Special Committee appointed in 2005 by the International Botanical Congress to advise on the problem. The Declaration recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered. That is, meaning that priority should be given to the first described name, except where that is a younger name in general use when the first author to select a name of a pleomorphic monophyletic genus is to be followed, and suggests controversial cases are referred to a body, such as the ICTF, which will report to the Committee for Fungi. If appropriate, the ICTF could be mandated to promote the implementation of the Declaration. In addition, but not forming part of the Declaration, are reports of discussions held during the symposium on the governance of the nomenclature of fungi, and the naming of fungi known only from an environmental nucleic acid sequence in particular. Possible amendments to the Draft BioCode (2011) to allow for the needs of mycologists are suggested for further consideration, and a possible example of how a fungus only known from the environment might be described is presented
    corecore